精英家教网 > 高中数学 > 题目详情
20.设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则(  )
A.πf(1)>ef(lnπ)B.πf(1)=ef(lnπ)
C.πf(1)<ef(lnπ)D.πf(1)与ef(lnπ)的大小不确定

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数可判断g(x)的单调性,由单调性可得g(1)与g(lnπ)的大小关系,整理即可得到答案.

解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,则g′=$\frac{f′(x)-f(x)}{{e}^{x}}$,
因为对任意x∈R都有f'(x)>f(x),
所以g′(x)>0,即g(x)在R上单调递增,
又1<lnπ,
所以g(1)<g(lnπ),
所以$\frac{f(1)}{e}$<$\frac{f(lnπ)}{{e}^{lnπ}}$,
即πf(1)<ef(lnπ),
故选C.

点评 本题考查导数的运算及利用导数研究函数的单调性,解决本题的关键是根据选项及已知条件合理构造函数,利用导数判断函数的单调性,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知集合A={0,1},B={-1,1},则A∪B={-1,0,1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}为等差数列,a3=3,a7=7,数列{bn}的首项b1=4,前n项和Sn满足对任意m,n∈N+,SmSn=2Sm+n恒成立.
(1)求{an}、{bn}的通项公式;
(2)若cn=anbn,数列{cn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.从1,2,3,4,5这5个数中,随机抽取2个不同的数,则这2个数的和为偶数的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的各项均为正数,a1=1,an+1=$\frac{{a}_{n}}{\sqrt{1+{{a}^{2}}_{n}}}$.
(1)求数列{an}的通项公式;
(2)令bn=$\frac{{a}_{n}•{a}_{n+1}}{{a}_{n}+{a}_{n+1}}$,求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=x-$\frac{1}{x+1}$,g(x)=x2-2ax+4,若任意x1∈[0,1],存在x2∈[1,2],使f(x1)≥g(x2),则实数a的取值范围是(  )
A.[$\frac{15}{8}$,+∞)B.[3,+∞)C.[$\frac{9}{4}$,+∞)D.($\sqrt{5}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求经过点M(2,6),且在两坐标轴上的截距之和为15的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\frac{1}{2}$x2-x,则f(x)的单调递增区间是(  )
A.(-∞,-1)和(0,+∞)B.(0,+∞)C.(-1,0)和(1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=ax2+bx+c(a≠0)满足f(-1+x)=f(-1-x),且f(0)=-3,f(1)=0.
(1)求函数f(x)的解析式;
(2)若函数g(x)=f(log2x)+mlog2x+m2在区间[$\frac{1}{4}$,4]上的最大值为20,求实数m的值;
(3)若对任意互不相同的实数x1,x2∈[1,5],恒有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<k成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案