精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=2,nan+1=(n+1)an,则{an}通项公式an=
 
分析:将所给的递推式变换成另一个数列,先计算出新数列的递推式,在根据两个数列指尖的关系,求出题目所要求的数列递推式.
解答:解:nan+1=(n+1)an两边同除以n(n+1),
an+1
n+1
=
an
n
+
1
n(n+1)

令bn=
an
n
,得bn+1=bn+
1
n(n+1)
,b1=
a1
1
=2,
于是bn=3-
1
n
,故an=nbn=(3-
1
n
)=3n-1,
故答案为3n-1.
点评:此题主要考查数列递推式的求解及相关计算.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案