精英家教网 > 高中数学 > 题目详情

佛山某中学高三(1)班排球队和篮球队各有名同学,现测得排球队人的身高(单位:)分别是:,篮球队人的身高(单位:)分别是:.

(Ⅰ)请把两队身高数据记录在如图所示的茎叶图中,并指出哪个队的身高数据方差较小(无需计算);
(Ⅱ)现从两队所有身高超过的同学中随机抽取三名同学,则恰好两人来自排球队一人来自篮球队的概率是多少?

(Ⅰ) 篮球队的身高数据方差较小;(Ⅱ).

解析试题分析:(Ⅰ)用中间的数字表示百位数和十位数,两边的数字表示个位数,茎按从小到大的顺序(或从大到小的顺序)从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出,从茎叶图中可以看出篮球队身高数字较为集中,故方差较小;(Ⅱ) 两队所有身高超过的同学恰有人,其中人来自排球队,人来自篮球队,分别编号,并列出从人中抽取名同学的基本事件总数,以及恰好两人来自排球队、一人来自篮球队包含的基本事件数,代入古典型的概率计算公式即可.
试题解析:(Ⅰ)茎叶图如图所示,篮球队的身高数据方差较小.

(Ⅱ) 两队所有身高超过的同学恰有人,其中人来自排球队,记为,人来自篮球队,记为,则从人中抽取名同学的基本事件为:,,,,,,,,,个;其中恰好两人来自排球队一人来自篮球队所含的事件有:,,,,,个, 所以,恰好两人来自排球队一人来自篮球队的概率是.
考点:1、茎叶图;2、方差;3、古典概型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品.在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:

分 组
频 数
频 率
[-3,-2)
 
0.10
[-2,-1)
8
 
(1,2]
 
0.50
(2,3]
10
 
(3,4]
 
 
合计
50
1.00
(1)将上面表格中缺少的数据填充完整.
(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率.
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(m/s)的数据如下表.


27
38
30
37
35
31

33
29
38
34
28
36
(1)画出茎叶图,由茎叶图你能获得哪些信息?
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、中位数、方差,并判断选谁参加比赛更合适.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查(若所选择的在校学生的人数低于被调查人群总数的80%,则认为本次调查“失效”),就“是否取消英语听力”的问题,调查统计的结果如下表:

态度
 

  

 
应该取消
 
应该保留
 
无所谓
 
在校学生
 
2100人
 
120人
 
y人
 
社会人士
 
600人
 
x人
 
z人
 
已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行深入访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)已知y≥657,z≥55,求本次调查“失效”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

根据空气质量指数(为整数)的不同,可将空气质量分级如下表:

(数值)
 

 

 

 

 

 

 
空气质量级别
 
一级
 
二级
 
三级
 
四级
 
五级
 
六级
 
空气质量类别
 

 

 
轻度污染
 
中度污染
 
重度污染
 
严重污染
 
空气质量类别颜色
 
绿色
 
黄色
 
橙色
 
红色
 
紫色
 
褐红色
 
某市日—日,对空气质量指数进行监测,获得数据后得到如图的条形图

(1)估计该城市本月(按天计)空气质量类别为中度污染的概率;
(2)在空气质量类别颜色为紫色和褐红色的数据中任取个,求至少有一个数据反映的空气质量类别颜色为褐红色的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂有25周岁以上(含2S周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60), [60,70), [70,80), [80,90), [90,100), 分别加以统计,得到如图所示的频率分布直方图。

(1)求样本中“25周岁以上(含25周岁)组”抽取的人数、日生产量平均数;
(2)若“25周岁以上组”中日平均生产90件及90件以上的称为“生产能手”;“25周岁以下组”中日平均生产不足60件的称为“菜鸟”。从样本中的“生产能手”和”菜鸟”中任意抽取2人,求这2人日平均生产件数之和X的分布列及期望。(“生产能手”日平均生产件数视为95件,“菜鸟”日平均生产件数视为55件)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某英语学习小组共12名同学进行英语听力测试,随机抽取6名同学的测试成绩(单位:分),用茎叶图记录如下,其中茎为十位数,叶为个位数.

(1)根据茎叶图计算样本均值;
(2)成绩高于样本均值的同学为优秀,根据茎叶图估计该小组12名同学中有几名优秀同学;
(3)从该小组12名同学中任取2人,求仅有1人是来自随机抽取6人中优秀同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为预防H7N9病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:

分组
A组
B组
C组
疫苗有效
673
a
b
疫苗无效
77
90
c
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知b≥465,c ≥30,求通过测试的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):

科研单位
相关人数
抽取人数
A
16

B
12
3
C
8

(Ⅰ)确定的值;
(Ⅱ)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.

查看答案和解析>>

同步练习册答案