精英家教网 > 高中数学 > 题目详情
17.若复数z满足iz=|$\frac{-1+\sqrt{3}i}{1+i}$|+2i(i为虚数单位),则复数z在复平面内所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 直接由复数代数形式的乘除运算化简$\frac{-1+\sqrt{3}i}{1+i}$,再由复数求模公式求出|$\frac{-1+\sqrt{3}i}{1+i}$|,代入已知条件化简求出复数z在复平面内对应的点的坐标,则答案可求.

解答 解:∵$\frac{-1+\sqrt{3}i}{1+i}$=$\frac{(-1+\sqrt{3}i)(1-i)}{(1+i)(1-i)}=\frac{-1+\sqrt{3}+(1+\sqrt{3})i}{2}$=$\frac{-1+\sqrt{3}}{2}+\frac{1+\sqrt{3}}{2}i$,
∴|$\frac{-1+\sqrt{3}i}{1+i}$|=$\sqrt{(\frac{-1+\sqrt{3}}{2})^{2}+(\frac{1+\sqrt{3}}{2})^{2}}=\sqrt{2}$.
由iz=|$\frac{-1+\sqrt{3}i}{1+i}$|+2i=$\sqrt{2}+2i$,
得$z=\frac{\sqrt{2}+2i}{i}$=$\frac{-i(\sqrt{2}+2i)}{-{i}^{2}}=2-\sqrt{2}i$.
则复数z在复平面内所对应的点的坐标为:(2,$-\sqrt{2}$),位于第四象限.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,点A是椭圆C上任意一点,且△AF1F2的周长为2($\sqrt{2}$+1)
(1)求椭圆C的标准方程;
(2)若动点B在直线l:y=$\sqrt{2}$上,且OA⊥OB,点O到直线AB的距离为d(A,B),求证:d(A,B)为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某冷饮店为了解气温变化对其营业额的影响,随机记录了该店1月份销售淡季中5天的日营业额y(单位:百元)与该地当日最低气温x(单位:℃)的数据,如下表所示:
x367910
y1210887
(Ⅰ)判定y与x之间是正相关还是负相关,并求回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(Ⅱ)若该地1月份某天的最低气温为6℃,预测该店当日的营业额
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n(\overline{x}\overline{y})}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知tan(α+$\frac{π}{4}$)=2,tan(β-$\frac{3π}{4}$)=-3,则tan(α-β)=(  )
A.1B.-$\frac{5}{7}$C.$\frac{5}{7}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=$\frac{{a}_{n}^{2}+3{a}_{n}+1}{{a}_{n}+2}$(n∈N*).
(Ⅰ)求证:$\frac{2n+1}{3}$≤an≤n;
(Ⅱ)设数列{an}的前n项和为Sn,当n≥5时,求证:Sn≥$\frac{1}{3}$n2+$\frac{4}{5}$n-$\frac{8}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,AB=$\sqrt{2}$,点D在边BC上,BD=2DC,cos∠DAC=$\frac{3\sqrt{10}}{10}$,cos∠C=$\frac{2\sqrt{5}}{5}$.
(1)求$\frac{AC}{DC}$的值;
(2)判断△ABD的形状,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一边长为a的正方形铁片,铁片的四角截去四个边长均为x的小正方形,然后做成一个无盖的方盒,当x等于$\frac{a}{6}$时,方盒的容积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.30°角所在的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\frac{x+m}{x+1}$的反函数为f-1(x),若f-1(2)=1,则实数m=3.

查看答案和解析>>

同步练习册答案