精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数),上的动点,点满足,点的轨迹为曲线

(1)求曲线的直角坐标方程;

(2)在以为极点,轴的正半轴为极轴的极坐标系中,射线的异于极点的交点为,与的异于极点的交点为,求.

【答案】(1) ;(2)

【解析】

(1)先设出点P的坐标,然后根据点满足的条件代入曲线的方程即可求出曲线的参数方程,再将参数方程化为普通方程;

(2)根据(1)求出曲线,的极坐标方程,分别求出射线的交点A的极径为,以及射线的交点B的极径为,最后根据求出所求.

解:(1)设,则由条件知

由于点在上,

所以,即

从而的参数方程为为参数)

所以曲线的方程为

(2)因为曲线的参数方程为

所以曲线的普通方程为,则

即曲线的极坐标方程为

同理可得曲线的极坐标方程为

射线的交点的极径为

射线的交点的极径为

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国古代十进制的算筹计数法,在数学史上是一个伟大的创造.根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为,径粗,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带.需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄.在算筹计数法中,以纵横两种排列方式来表示数字.如图,是利用算筹表示数1~9的一种方法.例如:3可表示为“”,26可表示为“”,现有6根算筹,据此表示方法,若算筹不能剩余,则用这6根算筹能表示的两位数的个数为( )

A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016年1月1日,我国全面实行二孩政策,某机构进行了街头调查,在所有参与调查的青年男女中,持“响应”“犹豫”和“不响应”态度的人数如下表所示:

响应

犹豫

不响应

男性青年

500

300

200

女性青年

300

200

300

根据已知条件完成下面的列联表,并判断能否有的把握认为犹豫与否与性别有关?请说明理由.

犹豫

不犹豫

总计

男性青年

女性青年

总计

1800

参考公式:

参考数据:

0.150

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在打击拐卖儿童犯罪的活动中,警方救获一名男孩,为了确定他的家乡,警方进行了调查:

知情人士A,他可能是四川人,也可能是贵州人;

知情人士B,他不可能是四川人;

知情人士C,他肯定是四川人;

知情人士D,他不是贵州人.

警方确定,只有一个人的话不可信.根据以上信息,警方可以确定这名男孩的家乡是(

A.四川B.贵州

C.可能是四川,也可能是贵州D.无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学届的震动。在1859年的时候,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想。在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字的素数个数大约可以表示为的结论。若根据欧拉得出的结论,估计1000以内的素数的个数为_________(素数即质数,,计算结果取整数)

A. 768 B. 144 C. 767 D. 145

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知梯形中,,四边形为矩形,,平面平面

Ⅰ)求证:平面

Ⅱ)求平面与平面所成锐二面角的余弦值;

Ⅲ)在线段上是否存在点,使得直线与平面所成角的正弦值为,若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知AB两个贫困县各有15名村代表,最终A县有5人表现突出,B县有3人表现突出,现分别从AB两个县的15人中各选1人,已知有人表现突出,则B县选取的人表现不突出的概率是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,角ABC对应的边分别是abc,已知cos2A﹣3cosB+C=1

1)求角A的大小;

2)若△ABC的面积S=5b=5,求sinBsinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,函数的图象在处的切线与直线平行.

(Ⅰ)求实数的值;

(Ⅱ)若函数存在单调递减区间,求实数的取值范围;

(Ⅲ)设()是函数的两个极值点,若,试求的最小值.

查看答案和解析>>

同步练习册答案