精英家教网 > 高中数学 > 题目详情
13、已知圆(x-2)2+(y-3)2=13和圆(x-3)2+y2=9交于A、B两点,则弦AB的垂直平分线的方程是
3x+y-9=0
分析:写出过两个圆的方程圆系方程,令λ=-1即可求出公共弦所在直线方程,就是弦AB的垂直平分线的方程.
解答:解:经过圆(x-2)2+(y-3)2=13和圆(x-3)2+y2=9交点的圆系方程为:(x-2)2+(y-3)2-13+λ[(x-3)2+y2-9]=0,
令λ=-1可得公共弦所在直线方程:3x+y-9=0,
就是弦AB的垂直平分线的方程.
故答案为:3x+y-9=0
点评:本题是基础题,考查圆系方程的有关知识,公共弦所在直线方程,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知圆(x-2)2+(y+1)2=16的一条直径通过直线x-2y+3=0被圆所截弦的中点,则该直径所在的直线方程为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x-2)2+y2=1经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的一个顶点和一个焦点,则此椭圆的离心率e=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆(x-2)2+(y-2)2=16与直线y=kx交于A,B两点,O是坐标原点.若
OA
+
OB
=
0
,则|AB|=
4
2
4
2

查看答案和解析>>

同步练习册答案