精英家教网 > 高中数学 > 题目详情

【题目】给定无穷数列,若无穷数列满足:对任意的,都有,则称“比较接近”.

(1)设是首项为1,公比为的等比数列,,判断数列是否与“比较接近”;

(2)设数列的前四项为:是一个与比较接近的数列,记集合,求中元素的个数

(3)已知是公差为的等差数列,若存在数列满足:较接近,且在中至少有1009个为正,求的取值范围.

【答案】(1)接近;

(2)3或4;

(3)

【解析】

1)运用等比数列的通项公式和新定义接近,即可判断;
2)由新定义可得,求得的范围,即可得到所求中元素的个数;
3)运用等差数列的通项公式可得,讨论公差的范围,结合新定义接近,分别取满足题意的数列,再进行推理和运算,即可得到所求的范围.

1)数列比较接近,理由如下:

因为是首项为1,公比为的等比数列,所以

又因为,所以

所以

所以数列比较接近”.

2)因为是一个与比较接近的数列,所以,即

因为数列的前四项为:,所以

所以在可能相等,可能相等,但不可能相等,不可能相等,

所以集合中元素的个数是3个或4个,

所以

3)因为是公差为的等差数列,所以

①若,取,数列满足:较接近,且

中有2018个正数,满足题意;

②若,取,得,数列满足:较接近,

中有2018个正数,满足题意;

③若,取,且 ,数列满足:较接近,

,所以

中恰有1009个正数,满足题意;

,若存在数列满足:较接近,即为

可得

中无正数,不符合题意。

综上可得:的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知三个内角所对的边分别是,若.

1)求角

2)若的外接圆半径为2,求周长的最大值.

【答案】(1) ;(2) .

【解析】试题分析:(1由正弦定理将边角关系化为边的关系,再根据余弦定理求角,(2先根据正弦定理求边,用角表示周长,根据两角和正弦公式以及配角公式化为基本三角函数,最后根据正弦函数性质求最大值.

试题解析:1)由正弦定理得

,∴,即

因为,则.

(2)由正弦定理

∴周长

∴当

∴当 周长的最大值为.

型】解答
束】
18

【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:

其中:

(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(的值精确到0.01)

(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg的70岁的老人,属于哪类人群?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知aR,函数f(x)=(-x2ax)ex(xR).

(1)a=2时,求函数f(x)的单调区间;

(2)若函数f(x)(-1,1)上单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体ABCDEABDEABAD,△ACD是正三角形.ADDE2AB2EC2FCD的中点.

1)求证AF∥平面BCE

2)求直线AD与平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败.

晋级成功

晋级失败

合计

16

50

合计

(1)求图中的值;

(2)根据已知条件完成下面列联表,并判断能否有的把握认为“晋级成功”与性别有关?

(3)将频率视为概率,从本次考试的所有人员中,随机抽取4人进行约谈,记这4人中晋级失败的人数为,求的分布列与数学期望

(参考公式:,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如下图,在四棱锥中,的中点。

(1)求证:

(2)线段上是否存在一点,满足?若存在,试求出二面角的余弦值;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=x2-a+1x+alnx+1

(Ⅰ)若x=3fx)的极值点,求fx)的极大值;

(Ⅱ)求a的范围,使得fx≥1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,点,直线的参数方程为为参数),曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线相交于两点.

(1)求曲线与直线交点的极坐标();

(2)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知函数

(1)时,判断函数上的零点的个数;

(2),是否存在实数,对,有恒成立,若存在,求出的范围:若不存在,请说明理由.

查看答案和解析>>

同步练习册答案