精英家教网 > 高中数学 > 题目详情
2.设$\sqrt{a+4}$+$\sqrt{a}$=2-n,那么$\sqrt{a+4}$-$\sqrt{a}$=(  )
A.22-nB.2n-2C.2n+2D.2-n-2

分析 根据分子有理化即可求出答案.

解答 解:$\sqrt{a+4}$-$\sqrt{a}$=4•$\frac{1}{\sqrt{a+4}+\sqrt{a}}$=2n+2
故选:C

点评 本题考查了根式的化简和计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在长方体ABCD-A1B1C1D1中,已知DA=DC=2,DD1=1,则异面直线A1B与B1C所成角的余弦值$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在正方体ABCD-A1B1C1D1 中,
(1)画出二面角A-B1C-C1 的平面角
(2)求证:面BB1DD1⊥面A1B1C1D1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,a1=1,an+1=$\frac{n+1}{2n}{a_n}$,n∈N*
(1)求证:数列{an}为等比数列.
(2)求{an}数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.己知抛物线y2=4x的焦点为F,过焦点的直线与抛物线交于A,B两点,则直线的斜率为±2$\sqrt{2}$时,|AF|+4|BF|取得最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.圆C1:(x-1)2+(y-3)2=9和C2:x2+(y-2)2=1,M,N分别是圆C1,C2上的点,P是直线y=-1上的点,则|PM|+|PN|的最小值是(  )
A.5$\sqrt{2}$-4B.$\sqrt{17}$-1C.6-2$\sqrt{2}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow{a}$=(k,2),$\overrightarrow{b}$=(1,-1),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数k的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设a>0为常数,若对任意正实数x,y不等式(x+y)($\frac{1}{x}$+$\frac{a}{y}$)≥9恒成立,则a的最小值为(  )
A.4B.2C.81D.$\frac{81}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某休闲广场中央有一个半径为1(百米)的圆形花坛,现计划在该花坛内建造一条六边形观光步道,围出一个由两个全等的等腰梯形(梯形ABCF和梯形DEFC)构成的六边形ABCDEF区域,其中A、B、C、D、E、F都在圆周上,CF为圆的直径(如图).设∠AOF=θ,其中O为圆心.
(1)把六边形ABCDEF的面积表示成关于θ的函数f(θ);
(2)当θ为何值时,可使得六边形区域面积达到最大?并求最大面积.

查看答案和解析>>

同步练习册答案