【题目】确定函数
的定义域、值域、单调区间、奇偶性、周期性.
【答案】定义域:
;值域:
;单调区间:
的递减区间是
;递增区间
;奇偶性:非奇非偶函数;周期性:周期函数,且最小正周期是![]()
【解析】
化简函数式为
,根据对数函数的真数
,结合正弦函数的性质,可得
定义域;由正弦函数的有界性和对数函数的单调性,可得
的值域;利用复合函数单调性增减原则,结合正弦型函数的单调性,即可求出
的单调性;先判断定义域是否关于原点对称,否则就是非奇非偶,若对称,再判断
与
的关系;
的周期取决于
的周期.
由已知
.
(1)欲使
有意义,必须
,
,
即
,
所以
的定义域为
;
(2)
,
即
,所以
的值域为
.
(3)考虑到
,即
.
当
,即
时,
单调递增,
单调递减,
所以
的递减区间是
.
同理可求,
的递增区间
.
(4)由于
的定义域不关于原点对称,所以
是非奇非偶函数.
(5)由于
是周期为
的函数,
所以
是周期函数,且最小正周期是
.
科目:高中数学 来源: 题型:
【题目】已知数列
的各项均为正数,其前n项的积为
,记
,
.
(1)若数列
为等比数列,数列
为等差数列,求数列
的公比.
(2)若
,
,且![]()
①求数列
的通项公式.
②记
,那么数列
中是否存在两项
,(s,t均为正偶数,且
),使得数列
,
,
,成等差数列?若存在,求s,t的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
(
)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线
上任意一点,过F作TF的垂线交椭圆C于点P,Q.
(i)证明:OT平分线段PQ(其中O为坐标原点);
(ii)当
最小时,求点T的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
平面
,底面
是直角梯形,其中
,
,
,
,
为棱
上的点,且
.
![]()
(1)求证:
平面
;
(2)求二面角
的余弦值;
(3)设
为棱
上的点(不与
,
重合),且直线
与平面
所成角的正弦值为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某百货商店今年春节期间举行促销活动,规定消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该商店经理对春节前
天参加抽奖活动的人数进行统计,
表示第
天参加抽奖活动的人数,得到统计表格如下:
| 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 5 | 8 | 8 | 10 | 14 | 15 | 17 |
(1)经过进一步统计分析,发现
与
具有线性相关关系.请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(2)该商店规定:若抽中“一等奖”,可领取600元购物券;抽中“二等奖”可领取300元购物券;抽中“谢谢惠顾”,则没有购物券.已知一次抽奖活动获得“一等奖”的概率为
,获得“二等奖”的概率为
.现有张、王两位先生参与了本次活动,且他们是否中奖相互独立,求此二人所获购物券总金额
的分布列及数学期望.
参考公式:
,
,
,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图甲所示的平面五边形
中,
,
,
,
,
,现将图甲所示中的
沿
边折起,使平面
平面
得如图乙所示的四棱锥
.在如图乙所示中
![]()
(1)求证:
平面
;
(2)求二面角
的大小;
(3)在棱
上是否存在点
使得
与平面
所成的角的正弦值为
?并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系xOy中,曲线C的参数方程为
(t为参数).以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(
)
.
(1)求曲线C和直线l的直角坐标方程;
(2)若直线l交曲线C于A,B两点,交x轴于点P,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com