精英家教网 > 高中数学 > 题目详情

在正四棱锥V-ABCD中,底面正方形ABCD的边长为1,侧棱长为2,则异面直线VA与BD所成角的大小为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:连接AC,交BD于O,连接VO,先在正方形ABCD中证出对角线AC、BD互相垂直,再在三角形VBD中,根据VB=VD和O为BD中点,证出VO、BD互相垂直,最后根据直线与平面垂直的判定理证出BD⊥平面ACV,从而BD⊥VA,即异面直线VA与BD所成角大小为
解答:连接AC,交BD于O,连接VO
∵四边形ABCD是正方形,
∴AC⊥BD,O为BD的中点
又∵正四棱锥V-ABCD中,VB=VD
∴VO⊥BD
∵AC∩VO=O,AC、VO?平面ACV
∴BD⊥平面ACV
∵VA?平面ACV
∴BD⊥VA
即异面直线VA与BD所成角等于
故选D
点评:本题以求正四棱锥中异面直线所成角为载体,着重考查了直线与平面垂直的判定与性质,以及异面垂直的概念,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)如图4,在体积为1的直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=1.求直线A1B与平面BB1C1C所成角的大小(结果用反三角函数值表示).

图4

(文)如图5,在正四棱锥P—ABCD中,PA=2,直线PA与平面ABCD所成的角为60°,求正四棱锥P—ABCD的体积V.

图5

查看答案和解析>>

科目:高中数学 来源: 题型:

 如右下图:正三棱柱ABC—A1B1C1的体积为V,点P、Q分别在侧棱AA1CC1上,AP=C1Q,则四棱锥B—APQC的体积为(    )

A.       B.        C.        D.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案