精英家教网 > 高中数学 > 题目详情
在约束条件
4x+3y-19≤0
2x-y+3≥0
y≥1
下,目标函数z=x-2y的最小值为
-9
-9
分析:作出题中不等式组表示的平面区域,得到如图的△ABC及其内部,再将目标函数z=x-2y对应的直线进行平移,观察直线在x轴上的截距变化,可得当x=1且y=5时,z=x-2y取得最小值-9.
解答:解:作出不等式组
4x+3y-19≤0
2x-y+3≥0
y≥1
表示的平面区域,
得到如图的△ABC及其内部,
其中A(-1,1),B(1,5),C(4,1).
设z=F(x,y)=x-2y,将直线l:z=x-2y进行平移,
观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值
∴z最小值=F(1,5)=1-2×5=-9
故答案为:-9
点评:本题给出二元一次不等式组,求目标函数z=x-2y的最小值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在约束条件
x≥-3
y≥-4
-4x+3y≤12
4x+3y≤36
 下,目标函数z=2x+3y的最小值为
-18
-18
,最大值为
30
30

查看答案和解析>>

科目:高中数学 来源: 题型:

在约束条件4x+y≤10,4x+3y≤20,x≥0,y≥0下,目标函数z=2x+y的最大值为
15
2
15
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在约束条件
x≥-3
y≥-4
-4x+3y≤12
4x+3y≤36
 下,目标函数z=2x+3y的最小值为______,最大值为______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江苏省苏州市高一(下)期末数学试卷(解析版) 题型:填空题

在约束条件4x+y≤10,4x+3y≤20,x≥0,y≥0下,目标函数z=2x+y的最大值为   

查看答案和解析>>

同步练习册答案