精英家教网 > 高中数学 > 题目详情
如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:上;
(2)设直线l:与椭圆W:有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求的最大值及取得最大值时m的值.
(1)证明见解析;(2)当时,取得最大值.

试题分析:解题思路:(1)由点写出直线方程,联立直线方程得到交点坐标,,验证点满足椭圆方程;(2)联立直线与椭圆的方程,常用“设而不求”的方法,求弦长,进而求所求比值,常用换元法求最值.规律总结:直线与圆锥曲线的位置关系问题,一般综合性强.一般思路是联立直线与圆锥曲线的方程,整理得关于的一元二次方程,常用“设而不求”的方法进行求解.
试题解析:(1)点
则直线EG:,直线FH:
则直线EG与FH的交点
因为,故直线EG与FH的交点L在椭圆W:上.
(2)联立方程组消去y,得
,则


若直线l过A点时,
①当时,,当时,最大值
②当时,设
,令,则
,即时,取最大值
综上所述,当时,取得最大值
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆G:经过椭圆的右焦点F及上顶点B,过椭圆外一点(m,0)()倾斜角为的直线L交椭圆与C、D两点.
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆Γ:(a>b>0)经过D(2,0),E(1,)两点.
(1)求椭圆Γ的方程;
(2)若直线与椭圆Γ交于不同两点A,B,点G是线段AB中点,点O是坐标原点,设射线OG交Γ于点Q,且.
①证明:
②求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,DP⊥x轴,点M在DP的延长线上,且
|DM|
|DP|
=
3
2
,当点P在圆x2+y2=4上运动时,求:动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

点M与点F(3,0)的距离比它到直线x+1=0的距离多2,则点M的轨迹方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+1(k∈R)与焦点在x轴上的椭圆恒有公共点,则t的取值范围是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)斜率的直线与椭圆相交于不同的两点M,N满足,求直线l的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的一个焦点为,离心率为.
(1)求椭圆的标准方程;
(2)若动点为椭圆外一点,且点到椭圆的两条切线相互垂直,求点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知F1、F2是椭圆+=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于(   )
A.11        B.10        C.9       D.8

查看答案和解析>>

同步练习册答案