精英家教网 > 高中数学 > 题目详情
(2012•浦东新区三模)已知a∈R,函数f(x)=x|x-a|.
(Ⅰ)当a=2时,求使f(x)≥x成立的x的集合;
(Ⅱ)求函数y=f(x)在区间[1,2]上的最小值.
分析:(Ⅰ)把a=2代入函数解析式,根据绝对值的符号分为两种情况,即x<2和x≥2分别求解对应不等式的解集,再把所有的解集取并集表示出来.
(Ⅱ)根据区间[1,2]和绝对值内的式子进行分类讨论,即a≤1、1<a<2和a≥2三种情况,分别求出解析式,利用二次函数的性质判断在区间上的单调性,再求最小值;最后用分段函数表示函数的最小值.
解答:解:(Ⅰ)由题意,f(x)=x|x-a|.…(1分)
当x<2时,f(x)=x(2-x)≥x,解得x∈[0,1]; …(2分)
当x≥2时,f(x)=x(x-2)≥x,解得x∈[3,+∞); …(3分)
综上,所求解集为x∈[0,1]∪[3,+∞); …(4分)
(Ⅱ)①当a≤1时,在区间[1,2]上,f(x)=x2-ax=(x-
a
2
2-
a2
4
,其图象是开口向上的抛物线,对称轴是x=
a
2

∵a≤1,∴
a
2
1
2
<1

∴f(x)min=f(1)=1-a…(6分)
②当1<a<2时,在区间[1,2]上,f(x)=x|x-a|≥0,
f(x)min=0…(8分)
③当a≥2时,在区间[1,2]上,f(x)=-x2+ax=-(x-
a
2
2+
a2
4

其图象是开口向下的抛物线,对称轴是x=
a
2

1° 当1≤
a
2
3
2
即2≤a<3时,f(x)min=f(2)=2a-4…(10分)
2° 当
a
2
3
2
即a≥3时,f(x)min=f(1)=1-a
∴综上,f(x)min=
1-a,a≤1
0,1<a<2
2a-4,2≤a<3
1-a,a≥3
…(12分)
点评:本题主要用了分类讨论的思想解决含有参数的函数求值和求最值问题,分类的标准是绝对值的符号,求二次函数在闭区间上的最值时,通常是利用函数在区间上的单调性,再求最值,有时需要对端点处的函数值进行作差比较大小.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•浦东新区一模)函数y=
log2(x-2) 
的定义域为
[3,+∞)
[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)若X是一个非空集合,M是一个以X的某些子集为元素的集合,且满足:
①X∈M、∅∈M;
②对于X的任意子集A、B,当A∈M且B∈M时,有A∪B∈M;
③对于X的任意子集A、B,当A∈M且B∈M时,A∩B∈M;
则称M是集合X的一个“M-集合类”.
例如:M={∅,{b},{c},{b,c},{a,b,c}}是集合X={a,b,c}的一个“M-集合类”.已知集合X={a,b,c},则所有含{b,c}的“M-集合类”的个数为
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)手机产业的发展催生了网络新字“孖”.某学生准备在计算机上作出其对应的图象,其中A(2,2),如图所示.在作曲线段AB时,该学生想把函数y=x
1
2
,x∈[0,2]
的图象作适当变换,得到该段函数的曲线.请写出曲线段AB在x∈[2,3]上对应的函数解析式
y=
2
(x-2)
1
2
+2
y=
2
(x-2)
1
2
+2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区一模)设复数z满足|z|=
10
,且(1+2i)z(i是虚数单位)在复平面上对应的点在直线y=x上,求z.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浦东新区二模)已知z=
1
1+i
,则
.
z
=
1
2
+
1
2
i
1
2
+
1
2
i

查看答案和解析>>

同步练习册答案