精英家教网 > 高中数学 > 题目详情
抛物线x2=y的准线方程是
4y+1=0
4y+1=0
分析:先根据抛物线的标准方程得到焦点在y轴上以及2p=1,再直接代入即可求出其准线方程.
解答:解:因为抛物线的标准方程为:x2=y,焦点在y轴上;
所以:2p=1,即p=
1
2

所以:
p
2
=
1
4

∴准线方程 y=-
p
2
=-
1
4
,即4y+1=0.
故答案为:4y+1=0.
点评:本题主要考查抛物线的基本性质.解决抛物线的题目时,一定要先判断焦点所在位置.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线x2=y的准线方程是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

3.抛物线x2=y的准线方程是(  )

(A)4x+1=0               (B)4y+1=0               (C)2x+1=0                      (D)2y+1=0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线x2=y的准线方程是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2=y的准线方程是(    )

A.4x+1=0            B.4y+1=0              C.2x+1=0               D.2y+1=0

查看答案和解析>>

同步练习册答案