精英家教网 > 高中数学 > 题目详情
设A是平面上形如(k,k3)=(k=-1,0,1,2,3)的点构成的集合,三点P,M,N是集合A中的元素,则以P,M,N为顶点,共可构成三角形的个数为
 
.(用数字作答)
考点:进行简单的合情推理
专题:计算题,推理和证明
分析:五个点(-1,-1),(0,0),(1,1),(2,8),(3,27)中有三点(-1,-1),(0,0),(1,1)共线,利用组合知识,可得构成三角形的个数.
解答: 解:五个点(-1,-1),(0,0),(1,1),(2,8),(3,27)中有三点(-1,-1),(0,0),(1,1)共线,那么可构成三角形的个数为
C
3
5
-
C
3
3
=9.
故答案为:9.
点评:本题考查进行简单的合情推理,确定五个点中有三点共线是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex-ax,其中e为自然对数的底数,a为常数.
(1)若对函数f(x)存在极小值,且极小值为0,求a的值;
(2)若对任意x∈[0,
π
2
],不等式f(x)≥ex(1-sinx)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在区间(-∞,0)上为增函数的是(  )
A、y=-2x
B、y=
2
x
C、y=-x2
D、y=|x|

查看答案和解析>>

科目:高中数学 来源: 题型:

两直立矮墙成135°二面角,现利用这两面矮墙和篱笆围成一个面积为54m2的直角梯形菜园(墙足够长),已知修筑篱笆每米的费用为50元,则修筑这个菜园的最少费用为为
 
元.

查看答案和解析>>

科目:高中数学 来源: 题型:

由y=ex、x轴、y轴及直线x=2围成的封闭图形的面积为(  )
A、e2
B、e2-1
C、e2+1
D、e2ln2-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知[x]表示不超过实数x的最大整数,例如[1.3]=1,[-2.6]=-3,g(x)=[x]为取整函数,已知x0是函数f(x)=lnx-
2
x
 的零点,则g(x0)等于(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

对某中学高二年级学生是爱好体育还是爱好文娱进行调查,共调查了50人,所得2×2列联表如下:
爱好
体育
爱好
文娱
合计
男生15AB
女生C10D
合计20E50
(1)求出2×2列联表中A、B、C、D、E的值;
(2)若已选出指定的三个男生甲、乙、丙;两个女生M,N,现从中选两人参加某项活动,求选出的两个人恰好是一男一女的概率;
(3)试用独立性检验方法判断性别与爱好体育关系?
参考公式:①K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

②独立性检验概率表
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(0,+∞),对任意x1,x2∈(0,+∞)都有f(
x1
x2
)=f(x1)-f(x2),且当x>1时,f(x)>0.
(Ⅰ)求f(1)的值;
(Ⅱ)求证:f(x)在(0,+∞)上是增函数;
(Ⅲ)若f(2)=1,求不等式f(x)-f(
1
x-3
)≤2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

如下一列数:
1
1×2
1
2×3
1
3×4
,…,
1
n(n+1)
,…其中前n个数的和记作sn,计算s1,s2,s3,s4的值,观察这些计算结果存在的规律,推测出计算sn的公式,并用数学归纳法作出证明.

查看答案和解析>>

同步练习册答案