精英家教网 > 高中数学 > 题目详情
20.已知三个函数f(x)=2x+x,g(x)=x-1,h(x)=log3x+x的零点依次为a,b,c,则(  )
A.a<b<cB.b<a<cC.c<a<bD.a<c<b

分析 利用函数零点的判定方法即可得出.

解答 解:令f(x)=2x+x=0,解得x<0,令g(x)=x-1=0,解得x=1,
由h(x)=log3x+x,令$h(\frac{1}{3})$=-1+$\frac{1}{3}$<0,h(1)=1>0,因此h(x)的零点x0∈$(\frac{1}{3},1)$.
则b>c>a.
故选:D.

点评 本题考查了对数与指数函数的单调性、函数零点的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+${\frac{{y}^{2}}{{b}^{2}}}^{\;}$=1(a>b>0)的左、右焦点分别为F1、F2,右顶点为A,上顶点为B,△BF1F2是边长为2的正三角形.
(Ⅰ)求椭圆C的标准方程及离心率;
(Ⅱ)是否存在过点F2的直线l,交椭圆于两点P、Q,使得PA∥QF1,如果存在,试求直线l的方程,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市对所有高校学生进行普通话水平测试,发现成绩服从正态分布N(μ,σ2),下表用茎叶图列举出来抽样出的10名学生的成绩.
(1)计算这10名学生的成绩的均值和方差;
(2))给出正态分布的数据:P(μ-σ<X<μ+σ)=0.6826,P(μ-2σ<X<μ+2σ)=0.9544.
由(1)估计从全市随机抽取一名学生的成绩在(76,97)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知(x+2)n=a0+a1(x-1)+a2(x-1)2…+an(x-1)n(n∈N*).
(1)求a0及Sn=$\sum_{i=1}^{n}$ai
(2)试比较Sn与(n-2)3n+2n2的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合A={1,2},B={1,2,4},C={1,4,6},则(A∩B)∪C=(  )
A.{1}B.{1,4,6}C.{2,4,6}D.{1,2,4,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
喜欢游泳不喜欢游泳合计
男生10
女生20
合计
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为$\frac{3}{5}$.
(1)请将上述列联表补充完整:并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(2)针对于问卷调查的100名学生,学校决定从喜欢游泳的人中按分层抽样的方法随机抽取6人成立游泳科普知识宣传组,并在这6人中任选2人作为宣传组的组长,设这两人中男生人数为X,求X的分布列和数学期望.
下面的临界值表仅供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x,y满足约束条件$\left\{{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}}\right.$,则z=-2x+y的最小值为-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)的定义域为[-1,1],图象如图1所示;函数g(x)的定义域为[-2,2],图象如图2所示,方程f[g(x)]=0有m个实数根,方程g[f(x)]=0有n个实数根,则m+n=14

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.己知点A(3,1),点B(2,-1),点C(-2,3)O为原点.则:
(1)$\frac{1}{3}$$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{BA}$=(-$\frac{2}{3}$,$\frac{8}{3}$);(写出坐标形式结论)
(2)线段AC中点坐标为($\frac{1}{2}$,2);
(3)设四边形ABCD为平行四边形,则$\overrightarrow{OD}$坐标为(-1,5)
(4)设△ABC重心G(三角形三条中线交点),则$\overrightarrow{OG}$坐标为(1,1).

查看答案和解析>>

同步练习册答案