精英家教网 > 高中数学 > 题目详情
10.三棱锥S-ABC中,∠ASB=∠ASC=90°,∠BSC=60°,SA=SB=SC=2,点G是△ABC的重心,则|$\overrightarrow{SG}$|等于(  )
A.4B.$\frac{8}{3}$C.$\frac{4\sqrt{3}}{3}$D.$\frac{4}{3}$

分析 如图所示,取BC的中点D,连接AD,SD,则SD⊥BC,AD⊥BC.由题意,AS⊥平面SBC,SA=2,SD=$\sqrt{3}$,AG=2GD=$\frac{2\sqrt{7}}{3}$,cos∠SAD=$\frac{2}{\sqrt{7}}$.利用余弦定理可得|$\overrightarrow{SG}$|.

解答 解:如图所示,取BC的中点D,连接AD,SD,则SD⊥BC,AD⊥BC.
由题意,AS⊥平面SBC,SA=2,SD=$\sqrt{3}$,AG=2GD=$\frac{2\sqrt{7}}{3}$,cos∠SAD=$\frac{2}{\sqrt{7}}$.
由余弦定理可得|$\overrightarrow{SG}$|=$\sqrt{4+\frac{28}{9}-2×2×\frac{2\sqrt{7}}{3}×\frac{2}{\sqrt{7}}}$=$\frac{4}{3}$,
故选D.

点评 本题考查棱锥的结构特征,考查线面垂直,考查余弦定理的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设等差数列{an}的前n项和为Sn,已知${({a_7}-1)^3}+2016({a_7}-1)=-1$,${({a_{2010}}-1)^3}+2016({a_{2010}}-1)=1$,则下列结论正确的是(  )
A.S2016=2016,a2010<a7B.S2016=2016,a2010>a7
C.S2016=-2016,a2010<a7D.S2016=-2016,a2010>a7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.使不等式a2+b2+2>λ(a+b)对任意的正数a,b恒成立的实数λ的取值范围是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.以点M(0,2)为圆心,并且与x轴相切的圆的方程为x2+(y-2)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题:“?x0>0,使2${\;}^{{x}_{0}}$>10”,这个命题的否定是(  )
A.?x>0,使2x>10B.?x>0,使2x≤10C.?x≤0,使2x≤10D.?x≤0,使2x>10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知椭圆具有性质:若M,N是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0且a,b为常数)上关于y轴对称的两点,P是椭圆上的左顶点,且直线PM,PN的斜率都存在(记为kPM,kPN),则kPM•kPN=$\frac{{b}^{2}}{{a}^{2}}$.类比上述性质,可以得到双曲线的一个性质,并根据这个性质得:若M,N是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上关于y轴对称的两点,P是双曲线C的左顶点,直线PM,PN的斜率都存在(记为kPM,kPN),双曲线的离心率e=$\sqrt{5}$,则kPM•kPN等于-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知抛物线C1:y2=2px(p>0)与双曲线C2:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0.b>0)有公共焦点F,且在第一象限的交点为P(3,2$\sqrt{6}$).
(1)求抛物线C1,双曲线C2的方程;
(2)过点F且互相垂直的两动直线被抛物线C1截得的弦分别为AB,CD,弦AB、CD的中点分别为G、H,探究直线GH是否过定点,若GH过定点,求出定点坐标;若直线GH不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,经过村庄A有两条互相垂直的笔直公路AB和AC,根据规划拟在两条公路围成的直角区域内建一工厂P,为了仓库存储和运输方便,在两条公路上分别建两个仓库M,N(异于村庄A,将工厂P及仓库M,N近似看成点,且M,N分别在射线AB,AC上),要求MN=2,PN=1(单位:km),PN⊥MN.
(1)设∠AMN=θ,将工厂与村庄的距离PA表示为θ的函数,记为l(θ),并写出函数l(θ)的定义域;
(2)当θ为何值时,l(θ)有最大值?并求出该最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.2016年微信用户数量统计显示,微信注册用户数量已经突破9.27亿.微信用户平均年龄只有26岁,97.7%的用户在50岁以下,86.2%的用户在18-36岁之间.为调查大学生这个微信用户群体中每人拥有微信群的数量,现从北京市大学生中随机抽取100位同学进行了抽样调查,结果如下:
微信群数量频数频率
0至5个00
6至10个300.3
11至15个300.3
16至20个ac
20个以上5b
合计1001
(Ⅰ)求a,b,c的值;
(Ⅱ)若从这100位同学中随机抽取2人,求这2人中恰有1人微信群个数超过15个的概率;
(Ⅲ)以这100个人的样本数据估计北京市的总体数据且以频率估计概率,若从全市大学生中随机抽取3人,记X表示抽到的是微信群个数超过15个的人数,求X的分布列和数学期望EX.

查看答案和解析>>

同步练习册答案