精英家教网 > 高中数学 > 题目详情
已知函数图像上一点处的切线方程为(1)求的值;(2)若方程在区间内有两个不等实根,求的取值范围;(3)令如果的图像与轴交于两点,的中点为,求证:
(1) a=2,b=1. (2)  (3)详见解析.

试题分析:(1)利用导数几何意义,函数在点处的导数值为切线的斜率,即,又,所以可得a=2,b=1. (2)利用函数与方程思想,即研究函数图像与直线有两个不同的交点,因为,所以当x∈时,, f(x)是增函数;当x∈时, , f(x)是减函数.且,所以 (3)正难则反,假设这样从等量关系进行逻辑推理,先列出等量关系,五个未知数,四个方程,应建立函数关系,关键是消元,观察可知应消去,得,转化为,这是关于的一元函数,利用导数可研究其单调性>0,故,即方程无解,假设不成立.
试题解析:解:(1),,.
,且.解得a=2,b=1.   .    (4分)
(2),设,
,令,得x=1(x=-1舍去).
当x∈时,, h(x)是增函数;当x∈时,, h(x)是减函数.
则方程内有两个不等实根的充要条件是
解得.                 (8分)
(3),.假设结论成立,
则有,①-②,得.
.由④得,于是有,∴,
.⑤ 令, (0<t<1),则>0.
在0<t<1上是增函数,有,∴⑤式不成立,与假设矛盾.
.                          (12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设函数fx)定义在(0,+∞)上,f(1)=0,导函数.
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在x0>0,使得|gx)﹣gx0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数.
(1)如果时,恒成立,求m的取值范围;
(2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线.
(1)求曲线在点()处的切线方程;
(2)若存在使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和为,对一切正整数,点都在函数的图像上,且过点的切线的斜率为.
(1)求数列的通项公式;
(2)设,等差数列的任一项,其中中所有元素的最小数,,求的通项公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为常数),在时取得极值.
(1)求实数的取值范围;
(2)当时,关于的方程有两个不相等的实数根,求实数的取值范围;
(3)数列满足),,数列的前项和为
求证:,是自然对数的底).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中为实数.
(1)当时,求函数在区间上的最大值和最小值;
(2)若对一切的实数,有恒成立,其中的导函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线在点处的切线与两坐标轴围成的三角形的面积为,则实数的值是_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,则(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案