精英家教网 > 高中数学 > 题目详情
10.抛物线y=4x2的焦点到准线的距离是$\frac{1}{8}$,准线方程为y=-$\frac{1}{16}$.

分析 抛物线方程化为标准方程,即可得出结论.

解答 解:抛物线y=4x2即x2=$\frac{1}{4}$y,焦点坐标为(0,$\frac{1}{16}$),准线的方程为y=-$\frac{1}{16}$,焦点到准线的距离是$\frac{1}{8}$.
故答案为:$\frac{1}{8}$;y=-$\frac{1}{16}$.

点评 本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.cos$\frac{25π}{6}$+cos$\frac{25π}{3}$+tan(-$\frac{25π}{4}$)=$\frac{\sqrt{3}}{2}$-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\left\{\begin{array}{l}{x^3},x≤a\\{x^2},x>a.\end{array}$若存在实数b,使函数g(x)=f(x)-b有两个零点,则a的取值范围是(  )
A.(-∞,-1)∪(0,+∞)B.(-∞,0)∪(1,+∞)C.(-∞,0)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lg(10x+a)是定义域为R上的奇函数,h(x)=tf(x).
(1)求实数a的值;
(2)若h(x)≤xlog3x在x∈[3,8]上恒成立,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知p:$\left\{{\begin{array}{l}{x+2≥0}\\{x-10≤0}\end{array}}\right.$,q:1-m≤x≤1+m,若非p是非q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在数列{an}中,设a1=a2=2,a3=4,若数列$\left\{{\frac{{{a_{n+1}}}}{a_n}}\right\}$为等差数列,则a5=48.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的图象经过点(0,$\frac{1}{2}$),对任意的x都有f(x1)≤f(x)≤f(x2),且|x2-x1|的最小值为$\frac{π}{2}$.
(1)求f($\frac{π}{12}$)的值;
(2)求函数f(x)在[-$\frac{π}{2}$,$\frac{3π}{2}$]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知p:$\left\{\begin{array}{l}{lg|x|≤1}\\{{2}^{x+2}≥1}\end{array}\right.$,q:x2-2x+1-m2≤0(m>0),若¬p是¬q的必要不充分条件,求实数m的取值范围(  )
A.(-∞,9]B.[9,+∞)C.(-∞,3]D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,四棱锥P-ABCD的底面四边形ABCD是梯形,AB∥CD,M是PC的中点,AM与平面PBD交于点E,且AE=EM.
(1)证明:CD=2AB;
(2)若PB=BC且平面PBC⊥平面PDC,证明:PA=AD.

查看答案和解析>>

同步练习册答案