精英家教网 > 高中数学 > 题目详情
函数f(x)=3lnx+1,g(x)=
1
2
ax2+2x+b   
(1)f(x)与g(x)在交点P(1,1)处有相同的切线,求a,b值;
(2)若h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围.
考点:利用导数研究曲线上某点切线方程,利用导数研究函数的单调性
专题:计算题,函数的性质及应用,导数的概念及应用,导数的综合应用
分析:(1)求导f′(x)=
3
x
,g′(x)=ax+2;从而由f(x)与g(x)在交点P(1,1)处有相同的切线得到f′(1)=g′(1),g(1)=
1
2
a+2+b=1,从而解得;
(2)化简函数h(x)并求定义域,再求导h′(x)=
3
x
-(ax+2)=
3-ax2-2x
x
,从而化h(x)=f(x)-g(x)存在单调递减区间为h′(x)<0有解,从而求得.
解答: 解:(1)由题意,f′(x)=
3
x
,g′(x)=ax+2;
∵f(x)与g(x)在交点P(1,1)处有相同的切线,
∴f′(1)=3=g′(1)=a+2,
g(1)=
1
2
a+2+b=1,
解得a=1,b=-
3
2

(2)h(x)=f(x)-g(x)=3lnx+1-(
1
2
ax2+2x+b)的定义域为(0,+∞),
h′(x)=
3
x
-(ax+2)=
3-ax2-2x
x

若使h(x)=f(x)-g(x)存在单调递减区间,
则只需使h′(x)<0有解,
即-ax2-2x+3<0在(0,+∞)上有解,
若a>0,成立,
若a=0,当x>
3
2
时成立;
若a<0,∵-
-2
-2a
=-
1
a
>0,
∴只需使△=4+4×3×a>0;
故-
1
3
<a<0;
综上所述,a的取值范围为(-
1
3
,+∞).
点评:本题考查了导数的综合应用及单调性的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+bx+c(b,c∈R),g(x)=4-x-m•(2-x)-9(m∈R),A={x|f(x)=x-2}.
(1)若A={1},解不等式f(x)>1;
(2)若b∈Z,-3∈A,x1,x2为方程f(x)=0的两个实根,且
4
x1
+
1
x2
=-
1
2

①求b,c的值
②若对任意的t1∈[-2,2],总存在t2∈[-2,2],使得f(t1)=g(t2)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

试比较下列各式的大小(不写过程)
(1)1-
2
2
-
3

(2)
2
-
3
3
-
4

通过上式请你推测出
n-1
-
n
n
-
n+1
(n≥2
且n∈N)的大小,并用分析法加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

设点M是等腰直角三角形ABC的底边AB的中点,P是直线AB上任意一点,PE⊥AC,E为垂足,PF⊥BC,F为垂足.求证:(1)|ME|=|MF|;  
(2)ME⊥MF.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个边长为3
π
cm的正方形薄木板的正中央有一个直径为2cm的圆孔,一只小虫在木板的一个面内随机地爬行,则小虫恰在离四个顶点的距离都大于2cm的区域的概率等于(  )
A、
1
2
B、
5
8
C、
4
9
D、
5
9

查看答案和解析>>

科目:高中数学 来源: 题型:

一个社会调查机构就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图(如右图).为了分析居民的收入与年龄、学历、职业等方面的关系,每隔500元一段要从这10000人中再用分层抽样方法抽出100人作进一步调查,则在[2500,3000)(元)月收入段应抽出的人数为(  )
A、20B、25C、35D、45

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四棱锥(底面是正方形,顶点在底面的射影是底面的中心)的底面边长为a,侧棱长为
2
a
(1)求它的外接球的体积
(2)求他的内切球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}满足a1=7,an+an+1=20,则{an}的前50项和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,曲线经过旋转或平移所产生的新双曲线与原双曲线具有相同的离心率和焦距,称它们为一组“任性双曲线”;例如将等轴双曲线x2-y2=2绕原点逆时针转动45°,就会得到它的一条“任性双曲线”y=
1
x
;根据以上材料可推理得出双曲线y=
3x+1
x-1
的焦距为(  )
A、4
B、4
2
C、8
D、8
2

查看答案和解析>>

同步练习册答案