精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,四边形为直角梯形,,又,直线与直线所成角为

(Ⅰ)求证:平面平面
(Ⅱ)求与平面所成角的正弦值.
(Ⅰ)见解析     (Ⅱ)
(I)证明线面垂直根据判定定理需证线面垂直.本小题只需证即可.
(II)如果直接找线面角不容易找,并且容易建立空间直角系的情况下考虑用空间向量法求角比较妥当.本小题就是如此.



由直线与直线所成角为,得
,即,解得

设平面的一个法向量为,则
,取,得
与平面所成角为,则,于是与平面所成角的正弦值为.---------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共12分)
如图,已知四棱锥中,底面,四边形是直角梯形,

(1)证明:
(2)在线段上找出一点,使平面
指出点的位置并加以证明;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,三棱柱ABC—A1B1C1中,底面为正三角形,侧棱与底面垂直,D是BC的中点,AA1=AB=1。

(1)  求证:A1C∥平面AB1D;
(2)  求点C到平面AB1D的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)如图,三棱柱ABC—A1B1C1中,AA1面ABC,BCAC,BC=AC=2,D为AC的中点。

(1)若AA1=2,求证:
(2)若AA1=3,求二面角C1—BD—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

类比平面几何中的定理 “设是三条直线,若,则”,得出如下结论:
①设是空间的三条直线,若,则
②设是两条直线,是平面,若,则
③设是两个平面,是直线,若
④设是三个平面,若,则
其中正确命题的个数是(    )  
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P为ΔABC所在平面外一点,PO⊥平面ABC,垂足为O,若PA=PB=PC,则点O是ΔABC的(  )                                   
A.内心B.外心C.重心D.垂心

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是(    )
A.48B.18C.24D.36

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两个不同的平面,是两条不同的直线,给出下列4个命题,其中正确命题是(    )
A.若,则
B.若,则
C.若,则
D.若在平面内的射影互相垂直,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示三条不同的直线,表示平面,给出下列命题:
①若,则;②若,则
③若,则;④若,则.
正确的是(   )
A.①②B.②③C.①④D.③④

查看答案和解析>>

同步练习册答案