精英家教网 > 高中数学 > 题目详情
在空间直角坐标系中,已知A(2,5,-2),B(-1,6,0),则AB=
 
考点:空间两点间的距离公式
专题:空间位置关系与距离
分析:直接利用空间两点间的距离公式求解即可.
解答: 解:在空间直角坐标系中,已知A(2,5,-2),B(-1,6,0),
则AB=
(2+1)2+(5-6)2+(-2-0)2
=
14

故答案为:
14
点评:本题考查空间两点间的距离公式的应用,基本知识的考查.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a=6,B=30°,C=120°,则△ABC的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={-3,-2,-1,0,1},集合B={x|x2-4=0},则A∩B=(  )
A、{-2}B、{2}
C、{-2,2}D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x2-1的值域为[1,+∞),定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定义域为B.
(1)求A;
(2)若B⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

g(x)是偶函数,f(x)是奇函数,f(x)与g(x)的乘积是
 
函数;f(x)与g(x)的乘积的绝对值是
 
函数;f(x)的绝对值与g(x)的乘积是
 
函数;f(x)与g(x)的绝对值的乘积是
 
函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在ABC中,a,b,c为角A,B,C所对的边,sin2C+sinAsinB=sin2A+sin2B
(1)求角C的大小;
(2)若c=2,且sinC+sin(B-A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三次函数f(x)=
1
3
ax3+
1
2
bx2-6x+1(x∈R),a,b为实数.
(1)若a=3,b=3时,求函数f(x)的极大值和极小值;
(2)设函数g(x)=f′(x)+7有唯一零点,若b∈[1,3],求
g(1)
g′(0)
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=λa(0<λ≤1).请利用空间向量解决下列问题:
(1)当λ=
2
3
时,求异面直线AE和SC所成的角的余弦值;
(2)若直线AB和平面AEC所成的角为30°,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-
a
x

(Ⅰ)若a>0,试判断f(x)在定义域内的单调性;
(Ⅱ)若f(x)在[1,e]上的最小值为
3
2
,求实数a的值;
(Ⅲ)若f(x)<x2在(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案