精英家教网 > 高中数学 > 题目详情
已知可导函数f(x)的导函数为f'(x),且满足f(x)=3x2+2xf'(2),则f'(5)=
6
6
分析:将f′(2)看出常数利用导数的运算法则求出f′(x),令x=2求出f′(2)代入f′(x),令x=5求出f′(5)即可.
解答:解:∵f(x)=3x2+2xf'(2),
∴f′(x)=6x+2f′(2)
令x=2得f′(2)=6×2+2f′(2)
∴f′(2)=-12
∴f′(x)=6x-24
∴f′(5)=30-24=6
故答案为:6
点评:本题主要考查了导数的运算法则,解题的关键是弄清f′(2)是常数,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、已知可导函数f(x)的导函数为f′(x),且满足f(x)=3x2+2xf′(5),则f′(5)=
-30

查看答案和解析>>

科目:高中数学 来源: 题型:

已知可导函数f(x)的导函数为g(x),且满足:①
g(x)-1
x-1
>0
;②f(2-x)-f(x)=2-2x,记a=f(2)-1,b=f(π)-π+1,c=f(-1)+2,则a,b,c的大小顺序为(  )
A、a>b>c
B、a>c>b
C、b>c>a
D、b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知可导函数f(x)为定义域上的奇函数,f(1)=1,f(2)=2.当x>0时,有3f(x)-x•f'(x)>1,则f(-
3
2
)的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知可导函数f(x)的导函数f'(x)的图象如图所示,给出下列四个结论:
①x=1是f(x)的极小值点;
②f(x)在(-∞,1)上单调递减;
③f(x)在(1,+∞)上单调递增;
④f(x)在(0,2)上单调递减,其中正确的结论是
.(写出所有正确结论的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知可导函数f(x)的导函数为g(x),且满足:①[g(x)-1](x-2)>0;②f(2-x)-f(x)=2-2x,记a=f(4)-3,b=f(e)-e+1,c=f(-1)+2,则a,b,c的大小顺序为(  )

查看答案和解析>>

同步练习册答案