精英家教网 > 高中数学 > 题目详情

设数列{an}满足lgan+1=1+lgan,且a1+a2+…+a5=4,则a16+a17+…+a20=


  1. A.
    4•1015
  2. B.
    5•1015
  3. C.
    5•104
  4. D.
    4•104
A
分析:由对数函数的运算法则化简lgan+1=1+lgan,得到此数列为等比数列且得到公比q的值,然后把所求的式子提取q15后,把a1+a2+…+a5=4和求出的q代入即可求出值.
解答:由lgan+1=1+lgan=lg10+lgan=lg10an
得到an+1=10an
所以此数列是公比q=10的等比数列,
则a16+a17+…+a20=q15(a1+a2+…+a5)=4•1015
故选A.
点评:此题考查学生灵活运用对数的运算法则化简求值,灵活运用等比数列的性质化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=3x2+1,g(x)=2x,数列{an}满足对于一切n∈N*有an>0,且f(an+1)-f(an)=g(an+1+
3
2
)
.数列{bn}满足bn=logana,设k,l∈N*bk=
1
1+3l
bl=
1
1+3k

(1)求证:数列{an}为等比数列,并指出公比;
(2)若k+l=9,求数列{bn}的通项公式.
(3)若k+l=M0(M0为常数),求数列{an}从第几项起,后面的项都满足an>1.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义:F(x,y)=yx(x>0,y>0),设数列{an}满足an=
F(n,1)
F(2,n)
,若Sn为数列{
anan+1
}的前n项和,则下列说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源:浙江省模拟题 题型:解答题

已知函数满足f(2)=1,且方程f(x)=x有且仅有一个实数根.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)设数列{an}满足a1=l,an+1=f(an)≠l,n∈N*,求数列{an}的通项公式;
(Ⅲ)定义,对于(Ⅱ)中的数列{an},令,设Sn为数列{bn}的前n项和,求证:Sn>ln(n+1).

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义:F(x,y)=yx(x>0,y>0),设数列{an}满足an=
F(n,1)
F(2,n)
,若Sn为数列{
anan+1
}的前n项和,则下列说法正确的是(  )
A.Sn>lB.Sn≥lC.Sn<1D.Sn≤l

查看答案和解析>>

科目:高中数学 来源:2013年高考数学复习卷C(五)(解析版) 题型:选择题

定义:F(x,y)=yx(x>0,y>0),设数列{an}满足an=,若Sn为数列{}的前n项和,则下列说法正确的是( )
A.Sn>l
B.Sn≥l
C.Sn<1
D.Sn≤l

查看答案和解析>>

同步练习册答案