精英家教网 > 高中数学 > 题目详情

已知椭圆的两个焦点为,点在椭圆上.

(Ⅰ)求椭圆的方程;

(Ⅱ)已知点,设点是椭圆上任一点,求的取值范围.

 

【答案】

(1)(2)

【解析】

试题分析:解:(1)设椭圆的方程为   1分

由椭圆定义,   3分

  .    5分

故所求的椭圆方程为.     6分

(2)设     7分

   9分

∵点在椭圆上,∴    10

      12分

有最小值有最大值

,∴的范围是     14分

考点:直线与椭圆的位置关系

点评:主要是考查了直线与椭圆的位置关系,以及向量的数量积的运用,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的两个焦点为F1(-
5
,0)
F2(
5
,0)
,M是椭圆上一点,若
MF1
MF2
=0
|
MF1
|•|
MF2
|=8
,则该椭圆的方程是(  )

查看答案和解析>>

科目:高中数学 来源:2012届重庆市“名校联盟”高二第一次联考文科数学试卷(解析版) 题型:选择题

已知椭圆的两个焦点为(),(1,0),椭圆的长半轴长为2,则椭圆方程为(   )

A.                           B.

C.                          D.

 

查看答案和解析>>

科目:高中数学 来源:2012届度安徽省泗县高三第一学期期中文科数学试卷 题型:解答题

已知椭圆的两个焦点为F1、F2,椭圆上一点满足

(1)求椭圆的方程;

(2)若直线与椭圆恒有两上不同的交点A、B,且(O是坐标原点),求k的范围。

 

查看答案和解析>>

科目:高中数学 来源:2011-2012年浙江省高二第一学期期中考试理科数学 题型:解答题

((本小题10分) 已知椭圆的两个焦点为,点在椭圆G上,且,且,斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).

    (1)求椭圆G的方程;

    (2)求的面积.

 

 

查看答案和解析>>

科目:高中数学 来源:2013届陕西省高二上学期期末考试理科数学 题型:选择题

已知椭圆的两个焦点为是椭圆上一点,

,则该椭圆的方程是(  )

 A、  B、  C、  D、

 

 

查看答案和解析>>

同步练习册答案