A.不等边的锐角三角形 B.直角三角形
C.钝角三角形 D.等边三角形
科目:高中数学 来源: 题型:
(1)求数列{bn}的通项公式;
(2)设有抛物线列C1,C2,…,Cn,…,抛物线Cn(n∈N*)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线Cn相切的直线的斜率为kn,求极限
.
(3)设集合X={x|x=2an,n∈N*},Y={y|y=4bn,n∈N*},若等差数列{Cn}的任一项Cn∈X∩Y,C1是X∩Y中的最大数,且-265<C10<-125,求{Cn}的通项公式.
查看答案和解析>>
科目:高中数学 来源:2010-2011年江西省高二下学期第一次月考数学文卷 题型:解答题
(本小题满分13分)
已知双曲线C:
=1(a>0,b>0)的离心率为
焦点到渐近线的距离为![]()
(1)求双曲线C的方程;
(2)已知直线x-y+m=0与双曲线C交于不同的两点A,B,且线段AB的中点在抛物
线y2=4 x上,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求数列{bn}的通项公式;
(2)设有抛物线列c1、c2、…cn、…,抛物线cn(n∈N)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线cn相切的直线斜率为kn,求极限
;
(3)设集合X={x|x=2an,n∈N},Y={y|y=4bn,n∈N}.若等差数列{cn}的任一项cn∈X∩Y,
c1是X∩Y中的最大数,且-265<c10<-125,求{cn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求数列{bn}的通项公式;
(2)设有抛物线列c1、c2、…cn、…,抛物线cn(n∈N)的对称轴平行于y轴,顶点为(an,bn),且通过点Dn(0,n2+1),过点Dn且与抛物线cn相切的直线斜率为kn,求极限
;
(3)设集合X={x|x=2an,n∈N},Y={y|y=4bn,n∈N}.若等差数列{cn}的任一项cn∈X∩Y, c1是X∩Y中的最大数,且-265<c10<-125,求{cn}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)求点Pn的坐标;
(2)设抛物线列C1,C2,…,Cn,…中的每一条的对称轴都垂直于x轴,第n条抛物线Cn的顶点为Pn,且经过点Dn(0,n2+1)(n∈N*).记与抛物线Cn相切于点Dn的直线的斜率为kn,求证:
+
+…+
<
;
(3)设S={x|x=2xn,n∈N*},T={y|y=4yn,n∈N*},等差数列{an}的任意一项an∈S∩T,其中a1是S∩T中的最大数,且-256<a10<-125,求数列{an}的通项公式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com