精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.
(1)证明:当点E在棱AB上移动时,D1E⊥A1D;
(2)在棱AB上是否存在点E,使二面角D1-EC-D的平面角为?若存在,求出AE的长;若不存在,请说明理由.

【答案】分析:(1)以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立空间直角坐标系,设E(1,y,0)(0≤y≤2)分别求出,然后计算数量积为0可判定D1E⊥A1D;
(2)先根据线面垂直求出平面D1EC的法向量为,而平面ECD的一个法向量为=(0,0,1),要使二面角D1-EC-D的平面角为,则,可解得y,求出所求.
解答:解:以D为原点,DA、DC、DD1所在直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系,则D(0,0,0),C(0,2,0),A1(1,0,1),D1(0,0,1).(1分)
设E(1,y,0)(0≤y≤2).(2分)
(1)证明:


,即D1E⊥A1D. (4分)
(2)解:当时,二面角D1-EC-D的平面角为.(5分)
,(6分)
设平面D1EC的法向量为=(x,y,z),
(8分)
取y=1,则n1=(2-y,1,2)是平面D1EC的一个法向量.(9分)
而平面ECD的一个法向量为=(0,0,1),(10分)
要使二面角D1-EC-D的平面角为
,(12分)
解得(0≤y≤2).
∴当时,二面角D1-EC-D的平面角为.(14分)
点评:本题主要考查了两直线垂直的判定,以及利用空间向量的方法求解二面角的平面角,同时考查了计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图在长方体ABCD-A1B1C1D1中,三棱锥A1-ABC的面是直角三角形的个数为:
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,定义八个顶点都在某圆柱的底面圆周上的长方体叫做圆柱的内接长方体,圆柱也叫长方体的外接圆柱.设长方体ABCD-A1B1C1D1的长、宽、高分别为a,b,c(其中a>b>c),那么该长方体的外接圆柱侧面积的最大值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.         B.               C.                 D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.如图,在长方体ABCD-A1B1C1D1中,四面体A1-ABC的直度为(    )

 

A.            B.              C.              D.1

查看答案和解析>>

科目:高中数学 来源:2010-2011年四川省成都市高二3月月考数学试卷 题型:填空题

(文科做)(本题满分14分)如图,在长方体

ABCDA1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.

(1)证明:D1EA1D;

(2)当EAB的中点时,求点E到面ACD1的距离;

(3)AE等于何值时,二面角D1ECD的大小为.                      

 

 

 

(理科做)(本题满分14分)

     如图,在直三棱柱ABCA1B1C1中,∠ACB = 90°,CB = 1,

CA =AA1 =M为侧棱CC1上一点,AMBA1

   (Ⅰ)求证:AM⊥平面A1BC

   (Ⅱ)求二面角BAMC的大小;

   (Ⅲ)求点C到平面ABM的距离.

 

 

 

 

 

查看答案和解析>>

同步练习册答案