精英家教网 > 高中数学 > 题目详情

点A(0,2)是圆x2+y2=16内的定点,点B,C是这个圆上的两个动点,若BA⊥CA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线。

所求轨迹为以(0,1)为圆心,以为半径的圆


解析:

设点M(x,y),因为M是定弦BC的中点,故OM⊥BC,     

又∵∠BAC=900 ,∴

,∴                                 

即: 42=(x2+y2)+[(x-0)2+(y-0)2]     

化简为x2+y2-2y-6=0,即x2+(y-1)2=7.

∴所求轨迹为以(0,1)为圆心,以为半径的圆。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,焦点在x轴上,P(2,0)为定点.
(Ⅰ)若点P为抛物线的焦点,求抛物线C的方程;
(Ⅱ)若动圆M过点P,且圆心M在抛物线C上运动,点A、B是圆M与y轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

点P(0,2)到圆C:(x+1)2+y2=1的圆心的距离为__________,如果点A是圆C上一个动点,AB的中点为P,那么点B的轨迹方程为____________________.

查看答案和解析>>

科目:高中数学 来源:2013年湖北新洲、红安、麻城一中高三上学期期末考文科数学试卷(解析版) 题型:填空题

在平面直角坐标系xOy中,已知点A(0,2),直线l:x+y-4=0,点B(x,y)是圆C:x2+y2-2x-1=0上的动点,AD⊥l,BE⊥l,垂足分别为D、E,则线段DE的最大值是________.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年辽宁省沈阳市四校协作体高三12月月考数学文卷 题型:解答题

(本小题满分12分)

已知定点A(,0),B是圆C:(x-)2+y2=16,(C为圆心)上的动点,AB的垂直平分线与BC交与点E.

(1)求动点E的轨迹方程.

(2)设直线l:y=kx+m (k≠0,m>0)与E的轨迹交与P,Q两点,且以PQ为对角线的菱形的一顶点为M(-1,0),求△OPQ面积的最大值及此时直线l的方程.

 

查看答案和解析>>

科目:高中数学 来源:2011年高三数学单元检测:圆锥曲线(2)(解析版) 题型:解答题

已知抛物线C的顶点在坐标原点,焦点在x轴上,P(2,0)为定点.
(Ⅰ)若点P为抛物线的焦点,求抛物线C的方程;
(Ⅱ)若动圆M过点P,且圆心M在抛物线C上运动,点A、B是圆M与y轴的两交点,试推断是否存在一条抛物线C,使|AB|为定值?若存在,求这个定值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案