精英家教网 > 高中数学 > 题目详情
已知{an}是一个公差大于0的等差数列,且满足a4a5=55,a3+a6=16
(1)求数列{an}的通项公式;
(2)若数列{an}和数列{bn}满足等式:
an-1=,an=为正整数),
设数列{bn}的前项和,cn=(an+19)(Sn+50),数列{cn}前n项和为Tn
求Tn的最小值
(1)an="6n-19" (2)144
(1)a3+a6=16a4+a5=16
又a4a5=55,所以a4=5,a5=11,所以d=6
所以等差数列{an}的通项公式an=6n-19
(2)当n=1时,S1=b1=2a1=-26
当n≥2时,
∵an-an-1=,∴bn=6·2n
∴Sn=b1+b2+b3+…+bn=-26+b2+b3+…+bn=-50+6·2n+1
检验知:Sn=-50+6·2n+1为任意正整数时皆成立.
∵cn=(an+19)(Sn+50)=72n·2n
∴Tn=c1+c2+c3+…+cn……①
∴2Tn=2c1+2c2+2c3+…+2cn……②
①-②得
-Tn=c1+72·22+72·23+72·24+…+72·2n-72n·2n+1
=72·2+72·22+72·23+72·24+…+72·2n-72n·2n+1
=72(2+22+23+24+…+2n)-72n·2n+1
=144(2n-1)-72n·2n+1
∴Tn=144(n-1)2n+144
∵Tn为递增数列,
∴n=1时, Tn=T1=144最小
∴Tn的最小值为144
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(2012•广东)设数列{an}的前n项和为Sn,满足,且a1,a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}中,a1=2,an=2-(n≥2,n∈N*).
(1)设bn,n∈N*,求证:数列{bn}是等差数列;
(2)设cn(n∈N*),求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{}是等差数列,数列{}的前项和满足,,

(1)求数列{}和{}的通项公式:
(2)设为数列{}的前项和,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(2013·孝感模拟)现有一根n节的竹竿,自上而下每节的长度依次构成等差数列,最上面一节长为10 cm,最下面的三节长度之和为114 cm,第6节的长度是首节与末节长度的等比中项,则n=________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等差数列的首项,公差,数列是等比数列,且.
(1)求数列的通项公式;
(2)设数列对任意正整数n,均有成立,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设等差数列的前n项和为,则=      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知等差数列中,已知,则 (     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

等差数列{}的前规项和为Sn,S3=6,公差d=3,则a4=(  )
A.8B.9C.11 D.12

查看答案和解析>>

同步练习册答案