精英家教网 > 高中数学 > 题目详情
14.求经过两圆x2+y2+6x-7=0和x2+y2+6y=0的交点,并且圆心在直线2x-y-4=0上的圆的方程x2+y2-$\frac{2}{3}$x+$\frac{20}{3}$y+$\frac{7}{9}$=0.

分析 设要求的圆的方程为(x2+y2+6x-7)+λ(x2+y2+6y)=0,根据它的圆心在直线2x-y-4=0上,求出λ的值,可得所求圆的方程.

解答 解:设经过两圆x2+y2+6x-7=0和x2+y2+6y=0的交点的圆的方程为(x2+y2+6x-7)+λ(x2+y2+6y)=0,
即x2+y2+$\frac{6}{1+λ}$x+$\frac{6λ}{1+λ}$y-$\frac{7}{1+λ}$=0,则它的圆心坐标为(-$\frac{3}{1+λ}$,-$\frac{3λ}{1+λ}$).
再根据圆心在直线2x-y-4=0上,可得-2×$\frac{3}{1+λ}$-(-$\frac{3λ}{1+λ}$)-4=0,解得λ=-10,
故所求的圆的方程为x2+y2-$\frac{2}{3}$x+$\frac{20}{3}$y+$\frac{7}{9}$=0,
故答案为:x2+y2-$\frac{2}{3}$x+$\frac{20}{3}$y+$\frac{7}{9}$=0.

点评 本题主要考查利用待定系数法求满足条件的圆的方程,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=x3+bx2+cx+d的图象如图所示,则函数y=log${\;}_{\frac{1}{2}}$(x2+$\frac{2}{3}$bx+$\frac{c}{3}$)的单调减区间为(  )
A.($\frac{1}{2}$,+∞)B.(3,+∞)C.(-∞,-$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若曲线C1:y=ax2(a>0)与曲线C2:y=ex在(0,+∞)上存在公共点,则a的取值范围为[$\frac{{e}^{2}}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,P是正方形ABCD所在平面外一点,PA⊥平面ABCD,AE⊥PD,PA=3AB.求直线AC与平面ABE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设P和Q是两个集合,定义集合P+Q={x|x∈P}或x∈Q且x∉P∩Q.若P={x|x2-5x-6≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于(  )
A.[-1,6]B.(-∞,-1]∪[6,+∞)C.(-3,5)D.(-∞,-3)∪[-1,5]∪(6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若$\underset{lim}{n→∞}$[2-($\frac{r}{r+1}$)n]=2,则实数r的取值范围是(-$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,O是AD的中点,PO⊥平面ABCD,△PAD是等边三角形,AB=BC=$\frac{1}{2}$AD=1,cos∠ADB=$\frac{2\sqrt{5}}{5}$,AD∥BC,AD<BD.
(1)证明:平面POC⊥平面PAD;
(2)求直线PD与平面PAB所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若A∩B=B,则实数m的取值范围是(  )
A.2≤m≤3B.m≤3C.2<m≤3D.m≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=ex+$\frac{x}{x+1}$.
(1)求证:函数f(x)的唯一零点x0∈(-$\frac{1}{2}$,0);
(2)求证:对任意λ>0,存在μ<0,使得f(x)<0在(-1,λμ)上恒成立;
(3)设g(x)=f(x)-x=($\frac{1}{2}$)h(x)-1,当x>0时,比较g(x)与h(x)的大小.

查看答案和解析>>

同步练习册答案