(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知
的三个顶点在抛物线
:
上运动,
(1). 求
的焦点坐标;
(2). 若点
在坐标原点, 且
,点
在
上,且
,
求点
的轨迹方程;
(3). 试研究: 是否存在一条边所在直线的斜率为
的正三角形
,若存在,求出这个正三角形
的边长,若不存在,说明理由.
(1) 【解】. 由
得
所以,焦点坐标为
……3分
(2) 【解1】设点
的坐标为
,
边所在的方程为
(
显然存在的),与抛物线
交于
则
得
,![]()
……5分
又点
在抛物线
上,故有
, ![]()
或
(舍)
-------①
……7分
又
的斜率为
,则有
,既
代入①
故
点轨迹为
(注:没写
扣1分) ……9分
另解:由上式①过定点
,
,
所以,
, 既![]()
【解2】设点
的坐标为
,
方程为
,由
得
方程为
,则
得
, 同理可得![]()
![]()
方程为
恒过定点
,
,
所以,
, 既![]()
(注:没写
扣1分)
(其他解法,可根据【解1】的评分标准给分)
(3) 【解1】
若存在
边所在直线的斜率为
的正三角形
,设
,
(其中不妨设
), 则
,
------① ……11分
令
,则
,即![]()
将①代入得,
,
-----------------②
……13分
线段
的中点为
,由①, ②得
的横坐标为
,
的纵坐标为
……15分
又设
由
得
点
在抛物线
上,则
,即
,
又因为
,
……18分
设
,![]()
的三边所在直线
的斜率分别是
------①
……12分
若
边所在直线的斜率为
,
边所在直线和
轴的正方向所成角为
,则
,
所以
……14分
即
-----②
又
--------------③
……16分
所以, ![]()
将②, ③代入上式得边长
……18分
(其他解法,可根据【解1】的评分标准给分)
【解析】略
科目:高中数学 来源: 题型:
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
查看答案和解析>>
科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试理科数学试题 题型:解答题
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
(本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
(文)已知数列
中,![]()
(1)求证数列
不是等比数列,并求该数列的通项公式;
(2)求数列
的前
项和
;
(3)设数列
的前
项和为
,若
对任意
恒成立,求
的最小值.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年上海市长宁区高三教学质量测试理科数学 题型:解答题
本小题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.
设函数
是定义域为R的奇函数.
(1)求k值;
(2)(文)当
时,试判断函数单调性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,试判断函数单调性并求使不等式
恒成立的
的取值范围;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值为-2,求m的值.
查看答案和解析>>
科目:高中数学 来源:上海市普陀区2010届高三第二次模拟考试理科数学试题 题型:解答题
(本题满分18分,其中第1小题5分,第2小题5分,第3小题8分)
在平面直角坐标系中,已知
为坐标原点,点
的坐标为
,点
的坐标为
,其中
且
.设
.
(1)若
,
,
,求方程
在区间
内的解集;
(2)若点
是过点
且法向量为
的直线
上的动点.当
时,设函数
的值域为集合
,不等式
的解集为集合
. 若
恒成立,求实数
的最大值;
(3)根据本题条件我们可以知道,函数
的性质取决于变量
、
和
的值. 当
时,试写出一个条件,使得函数
满足“图像关于点
对称,且在
处
取得最小值”.(说明:请写出你的分析过程.本小题将根据你对问题探究的完整性和在研究过程中所体现的思维层次,给予不同的评分.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com