精英家教网 > 高中数学 > 题目详情
6.计算sin5°cos55°+cos5°sin55°的结果是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 利用两角和的正弦函数公式,特殊角的三角函数值化简已知即可得解.

解答 解:sin5°cos55°+cos5°sin55°
=sin(5°+55°)
=sin60°
=$\frac{\sqrt{3}}{2}$.
故选:D.

点评 本题主要考查了两角和的正弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想的运用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(  )
A.y=x3B.y=ln|x|C.y=sin($\frac{π}{2}$-x)D.y=-x2-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且函数y=f(x)图象的两相邻对称轴间的距离为$\frac{π}{2}$.
(1)求f($\frac{π}{4}$-α)=$\frac{3\sqrt{7}}{4}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求sinα的值;
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位长度后,再将得到的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[-π,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.有以下程序:
  
根据以上程序,若函数g(x)=f(x)-m在R上有且只有两个零点,则实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知m,n是两条不同的直线,α,β是两个不同的平面,若m⊥α,n⊥β,且β⊥α,则下列结论一定正确的是(  )
A.m⊥nB.m∥nC.m与n相交D.m与n异面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.王师傅为响应国家开展全民健身运动的号召,每天坚持“健步走”,并用计步器对每天的“健步走”步数进行统计,他从某个月中随机抽取10天“健步走”的步数,绘制出的频率分布直方图如图所示.
(1)试估计该月王师傅每天“健步走”的步数的中位数及平均数(精确到小数点后1位);
(2)某健康组织对“健步走”结果的评价标准为:
每天的步数分组
(千步)
[8,10)[10,12)[12,14]
评价级别及格良好优秀
现从这10天中评价级别是“良好”或“及格”的天数里随机抽取2天,求这2天的“健步走”结果属于同一评价级别的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图所示的三角形数阵叫“莱布尼兹调和三角形”,它们是由整数的倒数组成的,第n行有n个数且两端的数均为$\frac{1}{n}$(n≥2),每个数是它下一行左右相邻两数之和,如$\frac{1}{1}$=$\frac{1}{2}$+$\frac{1}{2}$,$\frac{1}{2}$=$\frac{1}{3}$+$\frac{1}{6}$,$\frac{1}{3}$=$\frac{1}{4}$+$\frac{1}{12}$,…,则第n(n≥4)行倒数第四个数(从右往左数)为$\frac{1}{{n•C_{n-1}^3}}$或$\frac{6}{n(n-1)(n-2)(n-3)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}的前n项和是Sn,若数列{an}的各项按如下规则排列:$\frac{1}{2},\frac{1}{3},\frac{2}{3},\frac{1}{4},\frac{2}{4},\frac{3}{4},\frac{1}{5},\frac{2}{5},\frac{3}{5},\frac{4}{5},…,\frac{1}{n},\frac{2}{n},…,\frac{n-1}{n}$,…若存在正整数k,使Sk<100,Sk+1≥100,则ak=$\frac{14}{21}$,k=203.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>c,已知$\overrightarrow{BA}•\overrightarrow{BC}$=-3,cosB=-$\frac{3}{7}$,b=2$\sqrt{14}$,求:
(1)a和c的值;
(2)sin(A-B)的值.

查看答案和解析>>

同步练习册答案