精英家教网 > 高中数学 > 题目详情
(坐标系与参数方程选做题)在平面直角坐标系xOy中,曲线C1和C2的参数方程分别为C1
x=
5
cosθ
y=
5
sinθ
是参数)和C2
x=1-
2
2
t
y=-
2
2
t
(t是参数),它们的交点坐标为
(-1,-2)或(2,1)
(-1,-2)或(2,1)
分析:把曲线C1与C2的参数方程分别化为普通方程,解出对应的方程组的解,即得曲线C1与C2的交点坐标.
解答:解:在平面直角坐标系xOy中,曲线C1与C2的普通方程分别为 xx2+y2=5,x-y-1=0.
解方程组
x2+y2=5
x-y-1=0
  可得 故曲线C1与C2的交点坐标为(2,1),(-1,-2)
故答案为:(-1,-2)或(2,1)
点评:本题主要考查把参数方程化为普通方程的方法,求两条曲线的交点坐标,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)以原点为极点,x轴的正半轴为极轴,单位长度一致的坐标系下,已知曲线C1的参数方程为
x=2cosθ+3
y=2sinθ
(θ为参数),曲线C2的极坐标方程为ρsinθ=a,则这两曲线相切时实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系(ρ,θ)(ρ>0,0≤θ<
π
2
)中,曲线ρ=2sinθ与ρ=2cosθ的交点的极坐标为
2
π
4
2
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)
曲线
x=t
y=
1
3
t2
(t为参数且t>0)与直线ρsinθ=1(ρ∈R,0≤θ<π)交点M的极坐标为
(2,
π
6
(2,
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)(坐标系与参数方程选做题)已知在极坐标系下,点A(1,
π
3
),B(3,
3
),O是极点,则△AOB的面积等于
3
3
4
3
3
4

(2)(不等式选做题)关于x的不等式|
x+1
x-1
|>
x+1
x-1
的解集是
(-1,1)
(-1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(坐标系与参数方程选做题)在极坐标系中,已知点P(2,
π3
),则过点P且平行于极轴的直线的极坐标方程为
 

查看答案和解析>>

同步练习册答案