精英家教网 > 高中数学 > 题目详情
设μ∈R,函数f(x)=ex+
μ
ex
的导函数是f′(x),且f′(x)是奇函数,若曲线y=f(x)的一条切线的斜率是
3
2
,则该切点的横坐标是______.
解析:∵f(x)=ex+
μ
ex

∴f′(x)=ex-
μ
ex

由于f′(x)是奇函数,∴f′(-x)=-f′(x)对于x恒成立,则μ=1,
∴f′(x)=ex-
1
ex

又由f′(x)=ex-
1
ex
=
3
2

∴2e2x-3ex-2=0即(ex-2)(2ex+1)=0,
解得ex=2,故x=ln2.
故答案:ln2.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a∈R,函数f(x)=2x3-3(a+2)x2+12ax+4,
(1)若x=3是f(x)的一个极值点,求常数a的值;
(2)若f(x)在(-∞,1)上为增函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,设二次函数f(x)=3x2-2x+c(x∈R)的图象与两坐标轴有三个交点,经过这三个交点的圆记为A.
(1)求实数c的取值范围;
(2)求圆A的方程;
(3)问圆A是否经过某定点(其坐标与c无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为R的函数f(x)=
|lg|x-1||,x≠1
0,          x=1
,则关于x的方程f2(x)+bf(x)+c=0有7个不同实数解的充要条件是 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设μ∈R,函数f(x)=ex+
μ
ex
的导函数是f′(x),且f′(x)是奇函数,若曲线y=f(x)的一条切线的斜率是
3
2
,则该切点的横坐标是
ln2
ln2

查看答案和解析>>

同步练习册答案