(本小题共14分)
已知椭圆
经过点
其离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
相交于A、B两点,以线段
为邻边作平行四边形OAPB,其中顶点P在椭圆
上,
为坐标原点. 求
到直线距离的
最小值.
(共14分)
解:(Ⅰ)由已知,
,所以
, ① …………………1分
又点
在椭圆
上,所以
, ② …………………2分
由①②解之,得
.
故椭圆
的方程为
. …………………5分
(Ⅱ) 当直线
有斜率时,设
时,
则由
消去
得,
, …………………6分
, ③…………7分
设A、B、
点的坐标分别为
,则:
,…………8分
由于点
在椭圆
上,所以
. ……… 9分
从而
,化简得
,经检验满足③式.
………10分
又点
到直线
的距离为:
………11分
当且仅当
时等号成立 …………12分
当直线
无斜率时,由对称性知,点
一定在
轴上,
从而
点为
,直线
为
,所以点
到直线
的距离为1 ……13分
所以点
到直线
的距离最小值为
……14分
科目:高中数学 来源: 题型:
(本小题共14分)
如图,四棱锥
的底面是正方形,
,点E在棱PB上。
![]()
(Ⅰ)求证:平面
;
(Ⅱ)当
且E为PB的中点时,求AE与平面PDB所成的角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009北京理)(本小题共14分)
已知双曲线
的离心率为
,右准线方程为![]()
(Ⅰ)求双曲线
的方程;
(Ⅱ)设直线
是圆
上动点
处的切线,
与双曲线
交
于不同的两点
,证明
的大小为定值.
查看答案和解析>>
科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题
(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD
底面ABCD,PD=DC,点E是PC的中点,作EF
PB交PB于点F
⑴求证:PA//平面EDB
⑵求证:PB
平面EFD
⑶求二面角C-PB-D的大小
![]()
查看答案和解析>>
科目:高中数学 来源:2010年北京市崇文区高三下学期二模数学(文)试题 题型:解答题
(本小题共14分)
正方体
的棱长为
,
是
与
的交点,
为
的中点.
(Ⅰ)求证:直线
∥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求三棱锥
的体积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com