精英家教网 > 高中数学 > 题目详情
14.数列{an}满足a1=2,Sn=nan-n(n-1)
(1)求数列{an}的通项公式an
(2)令bn=$\frac{1}{(n+1){a}_{n}}$,求数列{bn}的前n项和Tn

分析 (1)由已知求出Sn-1=(n-1)an-1-(n-1)(n-2),两式相减得an=an-1+2,则数列{an}的通项公式an可求;
(2)由an=2n,代入bn=$\frac{1}{(n+1){a}_{n}}$,得到bn=$\frac{1}{2n(n+1)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$,进一步可求出Tn

解答 解:(1)n≥2时,Sn=nan-n(n-1),
∴Sn-1=(n-1)an-1-(n-1)(n-2).
两式相减得an=nan-(n-1)an-1-2(n-1),则(n-1)an=(n-1)an-1+2(n-1),
∴an=an-1+2.
∴{an}是首项为2,公差为2的等差数列.
∴an=2n;
(2)由(1)知an=2n,
∴bn=$\frac{1}{(n+1){a}_{n}}$=$\frac{1}{2n(n+1)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+1})$.
∴Tn=$\frac{1}{2}(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1})$=$\frac{1}{2}(1-\frac{1}{n+1})=\frac{n}{2n+2}$.

点评 本题考查了数列的通项公式以及数列的前n项和,考查了数列递推式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求下列函数最大值和最小值,并写出取得最值时x的集合:y=2sin(2x+$\frac{π}{3}$)(-$\frac{π}{6}$≤x≤$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列方程中表示椭圆的是(  )
A.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=4B.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2
C.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$+$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=6D.$\sqrt{{x}^{2}{+y}^{2}-4x+4}$-$\sqrt{{x}^{2}{+y}^{2}+4x+4}$=2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在极坐标系中,O是极点,设点A,B的极坐标分别是(2$\sqrt{3}$,$\frac{π}{6}$),(3,$\frac{2π}{3}$),则O点到直线AB的距离是$\frac{6\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)设全集U={不大于20的质数},且A∩(∁UB)={3,5},(∁UA)∩B={7,11},(∁UA)∩(∁UB)={2,17},请绘制韦恩图求出集合A,B;
(2)利用(1)题中的韦恩图解决下面问题:
向50名学生调查对A,B两观点的态度,结果如下:赞成观点A的人数是全体的$\frac{3}{5}$,其余的不赞成;赞成观点B的比赞成观点A的多3人,其余的不赞成;另外,对观点A,B都不赞成的学生比对观点A,B都赞成的学生的$\frac{1}{3}$多1人.问:对观点A,B都赞成的学生有多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义在R上的函数f(x)满足f(x+1)=2f(x),当x∈(0,1]时,f(x)=x2-x,则$f(\frac{7}{2})$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知U=R,集合A={x|1≤x≤4},B={x|6-a≤x≤2a-1}.
(Ⅰ)若a=3,求A?B,B?(CUA);
(Ⅱ)若B⊆A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知各项均为正数的等比数列{an},a4a5a6=8,a10a11a12=12,则a7a8a9=(  )
A.6$\sqrt{6}$B.9C.10D.4$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知正项等比数列{an}的前n项和为Sn,若S3=2a3-a1,则该数列的公比为(  )
A.2B.$\frac{1}{2}$C.4D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案