精英家教网 > 高中数学 > 题目详情
17.在平面直角坐标系xoy中,抛物线y2=2px(p>0)的焦点为F,点A(4,m)在抛物线上,且|AF|=5.
(1)求抛物线的标准方程.
(2)是否存在直线l,使l过点(0,1),并与抛物线交于B,C两点,且满足$\overrightarrow{OB}$•$\overrightarrow{OC}$=0?若存在,求出直线l的方程;若不存在,说明理由.

分析 (1)利用点A(4,m)在抛物线上,且|AF|=5,求出p,即可求出抛物线的标准方程;
(2)对“是否存在性”问题,先假设存在,设直线l的方程为x=k(y-1)(k≠0),与抛物线方程联立结合根的判别式求出k的范围,再利用向量垂直求出k值,看它们之间是否矛盾,没有矛盾就存在,否则不存在.

解答 解:(1)∵点A(4,m)在抛物线上,且|AF|=5,
∴4+$\frac{p}{2}$=5,
∴p=2,
∴抛物线的标准方程为y2=4x;
(2)由题可设直线l的方程为x=k(y-1)(k≠0),
代入抛物线方程得y2-4ky+4k=0;△=16k2-16k>0⇒k<0ork>1,
设B(x1,y1),C(x2,y2),则y1+y2=4k,y1y2=4k,
由$\overrightarrow{OB}$•$\overrightarrow{OC}$=0,即x1x2+y1y2=0⇒(k2+1)y1y2-k2(y1+y2)+k2=0,
解得k=-4或k=0(舍去),
∴直线l存在,其方程为x+4y-4=0.

点评 本小题主要考查曲线与方程,直线和抛物线等基础知识,以及求解存在性问题的基本技能和综合运用数学知识解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=kx+b的图象过点A(1,4),B(2,7).
(1)求实数的k,b值;
(2)证明当x∈(-∞,+∞)时,函数f(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知M={x|x2+x-2>0},$N=\{x|\frac{2}{2-x}>1\}$,则M∩N=(  )
A.{x|1<x<2}B.{x|0<x<1}C.{x|x<-2或x>1}D.{x|-2<x<2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法中正确的是(  )
A.若命题p:x∈R,x2-x-1<0,则¬p:x∈R,x2-x-1>0.
B.命题:“若x2=1,则x=1或x=-1”的逆否命题是:“若x≠1且x≠-1,则x2≠1”
C.“$φ=\frac{π}{2}$”是“y=sin(2x+φ)为偶函数”的充要条件
D.命题p:若$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,k2-2),则k=2是$\overrightarrow{a}⊥\overrightarrow{b}$的充分不必要条件;命题q:若幂函数f(x)=xa(a∈R)的图象过点(2,$\frac{\sqrt{2}}{2}$),则f(4)=$\frac{1}{2}$,则p∨(¬q)是假命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若曲线y=e-x上点P处的切线垂直于直线x-2y+1=0,则点P的坐标是(  )
A.(-2,ln2)B.(2,-ln2)C.(-ln2,2)D.(ln2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,}&{x<1}\\{4(x-a)(x-2a),}&{x≥1}\end{array}\right.$,若f(x)恰有2个零点,则实数a的取值范围是(  )
A.a≥2B.$\frac{1}{2}$≤a<1C.$\frac{1}{2}$<a<1D.a≥2或$\frac{1}{2}$≤a<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)已知x+x-1=3(x>0),求x${\;}^{\frac{3}{2}}$+x${\;}^{-\frac{3}{2}}$的值;
(2)已知log4(3x-1)=log4(x-1)+log4(3+x),求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,CC1=4,M是棱CC1的中点.
(1)求证:BC⊥AM;
(2)若N是AB的中点,求证CN∥平面AB1M.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设函数f(x)=$\left\{\begin{array}{l}{{2}^{x}-4,x>0}\\{-x-3,x<0}\end{array}\right.$,若f(a)>f(1),则实数a的取值范围是a>1或a<-1.

查看答案和解析>>

同步练习册答案