精英家教网 > 高中数学 > 题目详情

如图,正方形ADEF与梯形ABCD所在平面互相垂直,AD⊥CD,AB//CD,AB=AD=,点M在线段EC上且不与E、C垂合.

(1)当点M是EC中点时,求证:BM//平面ADEF;

(2)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M—BDE的体积.

 

【答案】

(1)详见解析;(2).

【解析】

试题分析:(1)建立空间直角坐标系,由题意计算平面的法向量,由法向量与向量垂直,从而证明了BM//平面ADEF;(2)设出点的坐标,由平面BDM与平面ABF所成锐二面角的余弦值为,分别计算两个半平面的法向量,代入夹角公式,从而得到点. 三棱锥M—BDE中由于到面的距离容易得知,故以为顶点,再计算出底面三角形,利用棱锥的体积公式即可得到所求.

试题解析:(1)以分别为轴建立空间直角坐标系

的一个法向量

.即        4分

(2)依题意设,设面的法向量

,则,面的法向量

,解得

为EC的中点,到面的距离

      12分

考点:1.线面平行的判定;2.二面角;3.三棱锥的体积.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(1)求证:BM∥平面ADEF;
(2)求几何体ABCDEFAD的体积和表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M为CE的中点.
(I)求证:BM∥平面ADEF;
(Ⅱ)求证:平面BDE⊥平面BEC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=
1
2
CD=2
,点M在线段EC上.
(I)当点M为EC中点时,求证:BM∥平面ADEF;
(II)当平面BDM与平面ABF所成锐二面角的余弦值为
6
6
时,求三棱锥M-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ADEF所在平面和等腰梯形所在平面ABCD垂直,已知BC=2AD=4,∠ABC=60°,BF⊥AC.
(Ⅰ)求证:AC⊥面ABF;
(Ⅱ)求异面直线BE与AF所成的角;
(Ⅲ) 求该几何体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正方形ADEF与梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4.
(Ⅰ)求异面直线DE与BC的距离;
(Ⅱ)求二面角B-EC-D的正切值.

查看答案和解析>>

同步练习册答案