精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,a2=2,an+2等于an+an+1除以3的余数,则{an}的前89项的和等于______.
∵a1=1,a2=2,an+2等于an+an+1除以3的余数,a1+a2=1+2=3=3×1,∴a3=0.
∴a2+a3=2+0=2=3×0+2,∴a4=2;
∴a3+a4=0+2=2=3×0+2,∴a5=2;
∴a4+a5=2+2=4=3×1+1,∴a6=1;
∴a5+a6=2+1=3=3×1+0,∴a7=0;
∴a6+a7=1=3×0+1,∴a8=1;
∴a7+a8=0+1=1=3×0+1,∴a9=1;
∴a8+a9=1+1=2=3×0+2,∴a10=2;
…,
可以看出:从a9开始周期性的出现1,2,0,2,2,1,0,1,….
故S89=S8×11+a89=(1+2+0+2+2+1+0+1)×11+a1=100.
故答案为100.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案