精英家教网 > 高中数学 > 题目详情

推理:因为平行四边形对边平行且相等,而矩形是特殊的平行四边形,所以矩形的对边平行且相等.以上推理的方法是(   )

A.合情推理B.演绎推理C.归纳推理D.类比推理

B

解析试题分析:每个演绎推理部有两个前提,即大前提(概括性的一般原理)和小前提(对个别事物的判断)、根据两个前提之间的关系做出新判断(推理),得出结论。本题中平行四边形对边平行且相等为大前提(概括性的一般原理),矩形是特殊的平行四边形为小前提(对个别事物的判断),根据两个前提之间的关系做出新判断(推理),得出矩形的对边平行且相等,所以本题为演绎推理。选B。
考点:演绎推理及合情推理

练习册系列答案
相关习题

科目:高中数学 来源: 题型:单选题

把正整数按一定的规则排成了如图所示的三角形数表.设是位于这个三角形数表中从上往下数第行,从左往右数第个数,若,则的和为(  )

A.105  B.103 C.82 D.81

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

用数学归纳法证明“时,从“”时,左边应增添的式子是(    )

A. B. C. D. 

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

对于任意正整数n,定义“”如下:
当n是偶数时,
当n是奇数时,
现在有如下四个命题:


的个位数是0;
的个位数是5。
其中正确的命题有(   )

A.1个 B.2个 C.3个 D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

凡自然数都是整数,而 4是自然数 所以,4是整数。以上三段论推理(     )

A.正确 B.推理形式不正确
C.两个“自然数”概念不一致 D.两个“整数”概念不一致

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

用反证法证明命题:“若整系数一元二次方程有有理根,那么中至少有一个是偶数时,下列假设中正确的是

A.假设都是偶数 
B.假设都不是偶数 
C.假设至多有一个是偶数 
D.假设至多有两个是偶数 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

执行如右图所示的程序框图,若输入的值是,则输出的值是              

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

若a,b∈R,则下面四个式子中恒成立的是(  )

A.lg(1+a2)>0B.a2+b2≥2(a-b-1)
C.a2+3ab>2b2D.<

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

分析法是从要证明的结论出发,逐步寻求使结论成立的(  )

A.充分条件 B.必要条件 C.充要条件 D.等价条件

查看答案和解析>>

同步练习册答案