(本小题共14分)
如图所示多面体中,AD⊥平面PDC,ABCD为平行四边形,E,F分别为AD,BP的中点,AD=
,AP=
,PC=
.
![]()
(Ⅰ)求证:EF∥平面PDC;
(Ⅱ)若∠CDP=90°,求证BE⊥DP;
(Ⅲ)若∠CDP=120°,求该多面体的体积.
(1)、(2)见解析;(3)
.
【解析】(18)解(Ⅰ)取PC的中点为O,连FO,DO,
∵F,O分别为BP,PC的中点,
∴
∥BC,且
,
又ABCD为平行四边形,
∥BC,且
,
∴
∥ED,且![]()
∴四边形EFOD是平行四边形 --------------------------------2分
即EF∥DO 又EF
平面PDC
∴EF∥平面PDC. ------------------------------------------- 4分
(Ⅱ)若∠CDP=90°,则PD⊥DC,
又AD⊥平面PDC ∴AD⊥DP,
∴PD⊥平面ABCD, --------------------------------- 6分
∵BE
平面ABCD,
∴BE⊥DP -------------------------------- 8分
(Ⅲ)连结AC,由ABCD为平行四边形可知
与
面积相等,
所以三棱锥
与三棱锥
体积相等,
即五面体的体积为三棱锥
体积的二倍.
∵AD⊥平面PDC,∴AD⊥DP,由AD=3,AP=5,可得DP=4
又∠CDP=120°PC=2
,
由余弦定理并整理得
, 解得DC=2
------------------- 10分
∴
三棱锥
的体积![]()
∴该五面体的体积为
-------------------- 12分
科目:高中数学 来源: 题型:
(本小题共14分)
如图,四棱锥
的底面是正方形,
,点E在棱PB上。
![]()
(Ⅰ)求证:平面
;
(Ⅱ)当
且E为PB的中点时,求AE与平面PDB所成的角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009北京理)(本小题共14分)
已知双曲线
的离心率为
,右准线方程为![]()
(Ⅰ)求双曲线
的方程;
(Ⅱ)设直线
是圆
上动点
处的切线,
与双曲线
交
于不同的两点
,证明
的大小为定值.
查看答案和解析>>
科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题
(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD
底面ABCD,PD=DC,点E是PC的中点,作EF
PB交PB于点F
⑴求证:PA//平面EDB
⑵求证:PB
平面EFD
⑶求二面角C-PB-D的大小
![]()
查看答案和解析>>
科目:高中数学 来源:2010年北京市崇文区高三下学期二模数学(文)试题 题型:解答题
(本小题共14分)
正方体
的棱长为
,
是
与
的交点,
为
的中点.
(Ⅰ)求证:直线
∥平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求三棱锥
的体积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com