精英家教网 > 高中数学 > 题目详情

定义在上的函数同时满足性质:①对任何,均有成立;②对任何,当且仅当时,有.则的值为                .

 

【答案】

0

【解析】

试题分析:首先根据题干条件解得f(0),f(-1)和f(-1)的值,然后根据对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2)可以判断f(0)、f(-1)和f(1)不能相等,据此解得答案解:∵对任何x∈R均有f(x3)=[f(x)]3,∴f(0)=(f(0))3,解得f(0)=0,1或-1, f(-1)=(f(-1))3,解得f(-1)=0,1或-1, f(1)=(f(1))3,解得f(1)=0,1或-1,∵对任何x1,x2∈R,x1≠x2均有f(x1)≠f(x2),∴f(0)、f(-1)和f(1)的值只能是0、-1和1中的一个,∴f(0)+f(-1)+f(1)=0,故答案为0

考点:函数的值

点评:本题主要考查函数的值的知识点,解答本题的关键是根据题干条件判断f(0)、f(-1)和f(1)不能相等,本题很容易出错

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在上的函数同时满足以下条件:

上是减函数,在上是增函数;②是偶函数;

处的切线与直线垂直.

(Ⅰ)求函数的解析式;

(Ⅱ)设,求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年辽宁省五校协作体高三上学期期中考试理科数学试卷(解析版) 题型:解答题

定义在上的函数同时满足以下条件:

(0,1)上是减函数,在(1,+∞)上是增函数;

是偶函数;

x0处的切线与直线yx2垂直.

(1)求函数的解析式;

(2)g(x),若存在实数x[1e],使<,求实数m的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建省高三第一次月考文科数学试卷(解析版) 题型:填空题

(本小题满分14分)

定义在上的函数同时满足以下条件:

上是减函数,在上是增函数; ② 是偶函数;

处的切线与直线垂直.

(1)求函数的解析式;

(2)设,若存在,使,求实数的取值范围.[

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省莱芜市高三4月自主检测文科数学试卷(解析版) 题型:解答题

定义在上的函数同时满足以下条件:

上是减函数,在上是增函数; ② 是偶函数;

处的切线与直线垂直.

(1)求函数的解析式;

(2)设,若存在,使,求实数的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年山东省淄博市高三第一学期期末数学理卷 题型:解答题

(本小题满分12分) 定义在上的函数同时满足以下条件:①上是减函数,在上是增函数;②是偶函数;

处的切线与直线垂直.

(Ⅰ)求函数的解析式;

(Ⅱ)设,若存在,使,求实数的取值范围.

 

查看答案和解析>>

同步练习册答案