已知椭圆C:
+
=1(a>b>0)的离心率为
,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
=
+
成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
(Ⅰ)
;(Ⅱ)P(
,±
),
x±y-
=0.
【解析】
试题分析:(Ⅰ) 先利用点到直线的距离公式求
,再利用离心率求
,最后利用参数的关系求
;(Ⅱ)设点利用方程组消元后得根与系数关系,然后代入题中条件化简可求.
试题解析:(Ⅰ) 设F(c,0),当l的斜率为1时,其方程为x-y-c=0,
∴O到l的距离为
,
由已知,得
=
,∴c=1.
由e=
=
,得a=
,b=
=
.
4分
(Ⅱ)假设C上存在点P,使得当l绕F转到某一位置时,有
=
+
成立,
设A(x1,y1),B(x2,y2),则P(x1+x2,y1+y2).
由(Ⅰ),知C的方程为
+
=1.
由题意知,l的斜率一定不为0,故不妨设l:x=ty+1.
由
,消去x并化简整理,得(2t2+3)y2+4ty-4=0.
由韦达定理,得y1+y2=-
,
∴x1+x2=ty1+1+ty2+1=t(y1+y2)+2=-
+2=
,
∴P(
,-
).
∵点P在C上,∴
+
=1,
化简整理,得4t4+4t2-3=0,即(2t2+3)(2t2-1)=0,解得t2=
.
当t=
时,P(
,-
),l的方程为
x-y-
=0;
当t=-
时,P(
,
),l的方程为
x+y-
=0.
故C上存在点P(
,±
),使
=
+
成立,此时l的方程为
x±y-
=0. 13分
考点:椭圆的基本概念,点到直线的距离,根与系数关系,设而不求的思想.
科目:高中数学 来源: 题型:
(08年泉州一中适应性练习文)(12分)已知椭圆C:
+
=1(a>b>0)的离心率为
,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点。
(1)求直线ON(O为坐标原点)的斜率KON ;
(2)对于椭圆C上任意一点M ,试证:总存在角
(
∈R)使等式:
=cos![]()
+sin![]()
成立。
查看答案和解析>>
科目:高中数学 来源: 题型:
(09年湖北重点中学4月月考理)(13分
已知椭圆C:
+
=1(a>b>0)的离心率为
,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的
(1)求直线ON(O为坐标原点)的斜率KON ;
1) (2)对于椭圆C上任意一点M ,试证:总存在角
(
∈R)使等式:
=cos![]()
+sin![]()
成立
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:
+
=1(a>b>0)的离心率为
,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点。
(1)求直线ON(O为坐标原点)的斜率KON ;
(2)对于椭圆C上任意一点M ,试证:总存在角
(
∈R)使等式:
=cos![]()
+sin![]()
成立。w.w.w.k.s.5.u.c.o.m
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆C:
+
=1(a>b>0)的离心率为
,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点。
(1)求直线ON(O为坐标原点)的斜率KON ;
(2)对于椭圆C上任意一点M ,试证:总存在角
(
∈R)使等式:
=cos![]()
+sin![]()
成立。
查看答案和解析>>
科目:高中数学 来源:2014届湖北省武汉市高三9月调研测试理科数学试卷(解析版) 题型:解答题
已知椭圆C:
+
=1(a>b>0)的离心率为
,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有
=
+
成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com