精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
16
+
y2
n2
=1
与双曲线
x2
8
-
y2
m
=1
有相同的焦点,则动点P(m,n)的轨迹为(  )
A、椭圆的一部分
B、双曲线的部分
C、抛物线的一部分
D、直线的部分
分析:由椭圆双曲线方程可求得焦点坐标,进而根据有相同的焦点,建立等式求得m和n的关系即可.
解答:解:由椭圆
x2
16
+
y2
n2
=1
,其焦点为(
16-n2
,0),
由双曲线
x2
8
-
y2
m
=1
,其焦点为(
8+m
,0),
椭圆
x2
16
+
y2
n2
=1
与双曲线
x2
8
-
y2
m
=1
有相同的焦点,
∴16-n2=8+m,(8+m≥0)这是一个抛物线的方程
故选C
点评:本题主要考查了圆锥曲线的共同特征的简单性质,属基础题.解答的关键是对圆锥曲线的定义与标准方程的正确理解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知椭圆
x2
16
+
y2
12
=1,点P为其上一点,F1、F2为椭圆的焦点,Q为射线F1P延长线上一点,且|PQ|=|PF2|,设R为F2Q的中点.
(1)当P点在椭圆上运动时,求R形成的轨迹方程;
(2)设点R形成的曲线为C,直线l:y=k(x+4
2
)与曲线C相交于A、B两点,若∠AOB=90°时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
16
+
y2
12
=1
的左焦点是F1,右焦点是F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|:|PF2|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
16
+
y2
12
=1
的左焦点是F1,右焦点是F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|:|PF2|=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
16
+
y2
9
=1
与x轴交于A、B两点,焦点为F1、F2
(1)求以F1、F2为顶点,以A、B为焦点的双曲线E的方程;
(2)M为双曲线E上一点,y轴上一点P (0,
16
3
)
,求|MP|取最小值时M点的坐标.

查看答案和解析>>

同步练习册答案