精英家教网 > 高中数学 > 题目详情
已知椭圆,直线相交于两点,轴、轴分别相交于两点,为坐标原点.
(1)若直线的方程为,求外接圆的方程;
(2)判断是否存在直线,使得是线段的两个三等分点,若存在,求出直线的方程;若不存在,说明理由.
(1);(2)存在,且直线的方程为.

试题分析:(1)先确定三个顶点的坐标,利用其外接圆圆心即为该三角形垂直平分线的交点求出外接圆的圆心,并利用两点间的距离公式求出外接圆的半径,从而求出外接圆的方程;(2)将是线段的两个三等分点等价转化为线段的中点与线段的中点重合,且有,借助韦达定理与弦长公式进行求解.
试题解析:(1)因为直线的方程为
所以轴的交点,与轴的交点.
则线段的中点
外接圆的圆心为,半径为
所以外接圆的方程为
(2)结论:存在直线,使得是线段的两个三等分点.
理由如下:
由题意,设直线的方程为

由方程组
所以,(*)
由韦达定理,得.
是线段的两个三等分点,得线段的中点与线段的中点重合.
所以
解得.
是线段的两个三等分点,得.
所以

解得.
验证知(*)成立.
所以存在直线,使得是线段的两个三等分点,此时直线l的方程为
.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

巳知椭圆的离心率是.
⑴若点P(2,1)在椭圆上,求椭圆的方程;
⑵若存在过点A(1,0)的直线,使点C(2,0)关于直线的对称点在椭圆上,求椭圆的焦距的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点为椭圆右焦点,圆与椭圆的一个公共点为,且直线与圆相切于点.

(1)求的值及椭圆的标准方程;
(2)设动点满足,其中M、N是椭圆上的点,为原点,直线OM与ON的斜率之积为,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率为.斜率为的直线与椭圆交于AB两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2)求△的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的两个焦点是)和,并且经过点,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1l2l1交抛物线E于点ABl2交抛物线E于点GH,求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知对,直线与椭圆恒有公共点,则实数的取值范围是
A.(0, 1)B.(0,5)C.[1,5)D.[1,5)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是椭圆的两个焦点,过且与椭圆长轴垂直的直线交椭圆于A、B两点,若是正三角形,则这个椭圆的离心率是(     )
A.    B.    C.     D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆上任意一点P及点,则的最大值为      

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知点A(0,1)是椭圆上的一点,P点是椭圆上的动点,
则弦AP长度的最大值为(   )
A.B.2C.D.4

查看答案和解析>>

同步练习册答案