精英家教网 > 高中数学 > 题目详情
函数y=asinx-bcosx(ab≠0)的一条对称轴的方程为x=
π
4
,则以
v
=(a,b)
为方向向量的直线的倾斜角为 (  )
A、45°B、60°
C、120°D、135°
分析:利用 x=
π
4
是函数y=asinx-bcosx图象的一条对称轴,求出a,b的关系,根据直线的方向向量与斜率的关系求出直线的斜率,从而求得直线的倾斜角.
解答:解:∵函数f(x)=asinx-bcosx(ab≠0)的一条对称轴的方程为x=
π
4

∴f(0)=f(
π
2
),即-b=a,
v
=(a,b)
为直线的方向向量,
∴k=
b
a
=-1,∵直线的倾斜角α∈[0,π),
∴α=135°.
故选D.
点评:本题是基础题,此题考查了对称性的应用和直线的方向向量,以及直线的斜率和倾斜角等基础知识,注意对称轴的应用,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线x=
π
6
是函数y=asinx-bcosx图象的一条对称轴,则函数y=bsinx-acosx图象的一条对称轴方程是(  )
A、x=
π
6
B、x=
π
3
C、x=
π
2
D、x=
π
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=asinx+2bcosx图象的一条对称轴方程是x=
π
4
,则直线ax+by+1=0和直线x+y+2=0的夹角的正切值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知当x=
π
6
时,函数y=sinx+acosx取最大值,则函数y=asinx-cosx图象的一条对称轴为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=asinx+
1
3
sin3x在x=
π
3
处有极值,则a=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点;又函数y=asinx+3bcosx图象的一条对称轴的方程是x=
π
6
.(1)求椭圆C的离心率e与直线AB的方程;(2)对于任意一点M∈C,试证:总存在角θ(θ∈R)使等式
OM
=cosθ
OA
+sinθ
OB
成立.

查看答案和解析>>

同步练习册答案