精英家教网 > 高中数学 > 题目详情

实数x,y满足x2+y2=4,则x2+8y+3的最大值是


  1. A.
    12
  2. B.
    19
  3. C.
    16
  4. D.
    23
B
分析:令z=x2+8y+3,把x2+y2=4代入消去x,然后根据二次函数的性质求出z的最值.
解答:令z=x2+8y+3,
∵x2+y2=4,
∴-2≤y≤2,
∴z=4-y2+8y+3=-y2+8y+7=-(y-4)2+23,
∵-2≤y≤2,
∴当y=2时,z有最大值19,
故选B.
点评:本题主要考查二次函数在闭区间上的最值的知识点,解答本题的关键是熟练掌握二次函数的性质,此题难度不大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果实数x,y满足x2+y2-4x+1=0,则
y2x
的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x2+(y+3)2
+
x2+(y-3)2
=10
,则t=
x
4
+
y
5
的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足x2+y2+xy=1,则x+y的取值范围是 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足x2+4y2=4,则
xy
x+2y-2
的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如果实数x,y满足x2+y2=1,则(1+xy)(1-xy)有(  )

查看答案和解析>>

同步练习册答案