精英家教网 > 高中数学 > 题目详情
已知△三角形ABC中,a,b,c分别是三个内角A,B,C的对边,设B=2A,则
ba
的取值范围是
 
分析:先由正弦定理把
b
a
换成角的正弦,利用二倍角公式化简求得
b
a
=2cosA,进而B=2A和三角形的内角和求得A的范围,进而根据余弦函数的单调性求得
b
a
的取值范围.
解答:解:由正弦定理可知
b
a
=
sinB
sinA
=
2sinAcosA
sinA
=2cosA
∵A+B+C=180°,B=2A
∴3A+C=180°,A=60°-
C
3
<60°
∴0<A<60°
1
2
<cosA<1
则1<
b
a
<2
故答案为:(1,2)
点评:本题主要考查了正弦定理的应用.解题的思路就是通过把边的问题转化成角的问题,然后利用三角函数的基本性质来解决问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三角形ABC中,a、b、c分别为角A、B、C的对边,设向量
m
=(c-2b,a),
n
=(cosA,cosC)
,且
m
n

(1)求角A的大小;
(2)若
AB
AC
=4
,求边长a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•南充一模)已知三角形ABC中,点D是BC的中点,过点D的直线分别交直线AB,AC于E、F两点,若
AB
=λ
AE
(λ>0),
AC
AF
(μ>0),则
1
λ
+
4
μ
的最小值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC中,A,B,C对边分别是a,b,c,若a,b,c,成等比数列,A=60°,则
bsinB
c
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三角形ABC中,AB=3,BC=
13
,∠BAC=60
°,则AC的长为
4
4

查看答案和解析>>

同步练习册答案