精英家教网 > 高中数学 > 题目详情
17.已知f(x)=1oga(1-x)+1oga(x+3)(0<a<1).
(1)求函数f(x)的定义域;
(2)解方程f(x)=0.

分析 (1)由真数大于零列出不等式组,解出即可;
(2)利用对数的运算性质得出1oga[(1-x)(x+3)]=0即(1-x)(x+3)=1,结合f(x)的定义域解出答案.

解答 解:(1)由函数有意义得:
$\left\{\begin{array}{l}{1-x>0}\\{x+3>0}\end{array}\right.$,解得-3<x<1,
∴函数f(x)的定义域是(-3,1).
(2)由f(x)=0得:
1oga(1-x)+1oga(x+3)=0,
即1oga[(1-x)(x+3)]=0
∴(1-x)(x+3)=1
解得x=-1±$\sqrt{3}$,
又∵-3<x<1
∴x=-1+$\sqrt{3}$或x=-1-$\sqrt{3}$.

点评 本题考查了对数函数的定义域,对数的运算性质,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若a∈R,则“a2>a”是“a>1”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=(x+1)(x-a)是偶函数,则f(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某种产品的广告费用支出X与销售额之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为10销售收入y的值.
参考公式:最小二乘法得$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$其中:$\widehat{b}$是回归方程的斜率,$\widehat{a}$是截距.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图是一个判断是否存在以a,b,6为三边长的钝角三角形的框图(其中a和b是不超过6的正实数).

(1)请你将判断框中的内容补充完整;
(2)如果a和b是通过分别抛掷两个均匀的般子而得到的,求形成钝角三角形的概率;
(3)如果a和b都是[0,6]中均匀分布的随机数且相互独立,求形成钝角三角形的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.一艘轮船在江中向正东方向航行,在点P处观测到灯塔A、B在一直线上,并且此直线与航行方向成30°角,轮船沿航线前进600米到达C处,此时观测到灯塔A在北偏西45°方向,灯塔B在北偏东15°方向.求两灯塔之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设等比数列{an}的前n项和为Sn=(-$\frac{1}{4}$)n+k.
(1)求k的值及数列{an}的通项公式;
(2)设bn=$\frac{1}{lo{g}_{2}|\frac{{a}_{n}}{5}|•lo{g}_{2}|\frac{{a}_{n+1}}{5}|}$,求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正方体中相邻两个面上的对角线所成的角的大小为(  )
A.60°B.45°C.90°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x)是定义在[-1,1]上的奇函数,且在区间[0,1]上同时满足三个条件:(1)对于任意x1,x2∈[0,1],当x1<x2时,恒有f(x1)≤f(x2);(2)f($\frac{x}{5}$)=$\frac{1}{2}$f(x);(3)f(x)+f(1-x)=1,则f($\frac{1}{2}$)+f($\frac{1}{5}$)+f($\frac{1}{15}$)=$\frac{5}{4}$.

查看答案和解析>>

同步练习册答案