【题目】已知过点P(4,0)的动直线与抛物线C:
交于点A,B,且
(点O为坐标原点).
(1)求抛物线C的方程;
(2)当直线AB变动时,x轴上是否存在点Q使得点P到直线AQ,BQ的距离相等,若存在,求出点Q坐标,若不存在,说明理由.
【答案】(1)
=
;(2)
轴上存在点
,使得点
到直线
,
的距离相等.
【解析】
(1)设过点
的动直线为
=
,联立抛物线的方程,设
,
,运用韦达定理,结合向量的数量积的坐标表示,化简可得
,进而得到抛物线方程;
(2)
轴上假设存在点
符合题意,由题意可得
=
,运用直线的斜率公式和韦达定理,化简可得
的值,即可判断存在性.
(1)设过点
的动直线为
=
,
代入抛物线
=
,可得
=
,
设
,
,
可得
=
,
由
可得
=
=
,
解得
=
,则抛物线的方程为
=
;
(2)当直线
变动时,
轴上假设存在点
使得点
到直线
,
的距离相等,
由角平分线的判定定理可得
为
的角平分线,即有
=
,
由(1)可得
=
,
=
,
则
,
化为
=
,
即为
=
,
化简可得
=
,
则
轴上存在点
,使得点
到直线
,
的距离相等.
科目:高中数学 来源: 题型:
【题目】为了解高中学生对数学课是否喜爱是否和性别有关,随机调查220名高中学生,将他们的意见进行了统计,得到如下的
列联表.
喜爱数学课 | 不喜爱数学课 | 合计 | |
男生 | 90 | 20 | 110 |
女生 | 70 | 40 | 110 |
合计 | 160 | 60 | 220 |
(1)根据上面的列联表判断,能否有
的把握认为“喜爱数学课与性别”有关;
(2)为培养学习兴趣,从不喜爱数学课的学生中进行进一步了解,从上述调查的不喜爱数学课的人员中按分层抽样抽取6人,再从这6人中随机抽出2名进行电话回访,求抽到的2人中至少有1名“男生”的概率.
参考公式:
.
P( | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
:
(
)的焦点
到点
的距离为
.
(1)求抛物线
的方程;
(2)过点
作抛物线
的两条切线,切点分别为
,
,点
、
分别在第一和第二象限内,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2(cos2θ+3sin2θ)=12,直线l的参数方程为
(t为参数),直线l与曲线C交于M,N两点.
(1)若点P的极坐标为(2,π),求|PM||PN|的值;
(2)求曲线C的内接矩形周长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1+a2+…+an=an+1﹣2.
(1)若a1=2,求数列{an}的通项公式;
(2)若数列1,a2,a4,b1,b2,…bn,…成等差数列,求数列{bn}的前n项和为Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】曲线
的参数方程为
(
为参数),以原点
为极点,
轴的正半轴为极轴的极坐标系中,曲线
的极坐标方程为
.
(1)求曲线
的极坐标方程和曲线
的直角坐标方程;
(2)若直线
与曲线
,
的交点分别为
、
(
、
异于原点),当斜率
时,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了解高一高二各班体育节的表现情况,统计了高一高二各班的得分情况并绘成如图所示的茎叶图,则下列说法正确的是( )
![]()
A.高一年级得分中位数小于高二年级得分中位数
B.高一年级得分方差大于高二年级得分方差
C.高一年级得分平均数等于高二年级得分平均数
D.高一年级班级得分最低为![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】保护环境就是保护人类健康.空气中负离子浓度(单位:个/
)可以作为衡量空气质量的一个指标,也对人的健康有一定的影响.根据我国部分省市区气象部门公布的数据,目前对空气负离子浓度的等级标准如下表
.
表
负离子浓度与空气质量对应标准:
负离子浓度 | 等级 | 和健康的关系 |
|
| 不利 |
|
| 正常 |
|
| 较有利 |
|
| 有利 |
|
| 相当有利 |
|
| 很有利 |
|
| 极有利 |
图
空气负离子浓度
![]()
某地连续
天监测了该地空气负离子浓度,并绘制了如图
所示的折线图.根据折线图,下列说法错误的是( )
A.这
天的空气负离子浓度总体越来越高
B.这
天中空气负离子浓度的中位数约
个![]()
C.后
天的空气质量对身体健康的有利程度明显好于前
天
D.前
天空气质量波动程度小于后
天
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=sin 3x-
cos 3x+1的图象向左平移
个单位长度,得到函数g(x)的图象,给出下列关于g(x)的结论:
①它的图象关于直线x=
对称;
②它的最小正周期为
;
③它的图象关于点(
,1)对称;
④它在[
]上单调递增.
其中所有正确结论的编号是( )
A.①②B.②③C.①②④D.②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com